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Various kinds of Algorithms

Determinstic Algorithm: Solves the problem exactly.

Randomized Algorithm: Solves the problem correctly with
high probabilty. Saves running time.

Approximation Algorithm: Gives an approximate sollution
to the problem. Saves running time.

Parametrized Algorithms: Solves the problem exactly and
quickly if the input has certain parameter “small”.

One Main Goal: Have running time polynomial.
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What about sub-linear?

Cannot even read the whole input!

But sometimes it is very important for various reasons:

Want the answer in very small time (possibly constant
time).

Accessing the input can be costly affair or even impossible.
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Property Testing

In Property testing we are usually interested in sub-linear query
complexity, that is, we want to read a small fraction of the
input.

But how is it possible?
We have to give up on something. We will assume some
promise on the input.
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Example: Checking Equality

Equality of strings

Given two strings x, y ∈ {0, 1}n check if x = y, that is, for
every i ∈ {1, . . . , n} is xi = yi.

The goal is to answer it in CONSTANT time and hence can’t
even read the whole input. −− Not Possible

But, say, there is a promise that either x = y OR x and y differ
at more than 1/4 fraction of the indices. Then ...
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Simple sampling algorithm for testing of equality

Algorithm

Randomly pick 4 indices {i1, i2, i3, i4} uniformly and
independently at random. If

xi1 = yi1 , xi2 = yi2 , xi3 = yi3 , xi4 = yi4 ,

then ACCEPT otherwise REJECT.

If x = y then the algorithm always ACCEPTS.

If x and y differ at 1/4 fraction of the indices then the
algorithm ACCEPTS with probability at most 1/3.
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Example: Exit poll

Election

Given a set of n voter (voting for Party A or Party B) check if
Party A has more votes than Party B.

If the goal is to sample a small part of the voters then its not
possible always to give the right answer (even with high
probability).

But if we want to distinguish between whether Party A wins by
a big margin or Party B wins by a big margin: then statistical
sample works.
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Example: Checking Bipartiteness.

2-colorability

Given an undirected graph G can we color the vertices of G
with 2 colors such that no adjacent vertices are of the same
color? Or in other words is it bipartite.

In general it may require us to look at the whole graph to
answer but can we look at a very small fraction of the graph
and distinguish

The graph is bipartite

A “lot” of edges have to be removed to make it bipartite.
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Formal Definitions: Property and distance

Let x ∈ {0, 1}n be an input.

A property P is a subset of {0, 1}n.

For two strings x, y ∈ {0, 1}n, dist(x, y) is the fraction of
indices where they differ.

dist(x, y) = |{i|xi 6= yi}|/n.

For a input x and a property P,
dist(x,P) = miny∈P dist(x, y).

x is ε-far from being a property if dist(x,P) > ε.

Promise Problem

For a property P and a distance parameter ε, given an input x
distinguish between the two cases:
(a) Is x ∈ P, OR (b) Is x ε-far from P.
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Informal Definition

Under some ASSUMPTION on the input can we make some
intelligent deductions in SUB-LINEAR query/sample (or even
time and space) complexity.
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Use of Property Testing techniques

Many areas of research has been using techniques from property
testing, including:

Machine Learning

Program Checking

Communication Complexity

Coding theory and cryptography

I usually classify problems in problems in property testing (and
related areas) into 4 categoried: Function properties, Graph
properties, Geometric properties and Distribution properties
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Examples of Function properties

Linearity Testing: Given a truth-table of a function f
test is the function f linear OR the function has to be
changed at at-least ε fraction of the domain to make it
linear.

Branching Program Testing: Given a truth-table of a
function f test is the function is accepted by a constant
depth read-once branching program OR is far from being
accepted by a constant depth read-once branching program.

Isomorphism Testing: Given two functions F1 and F2

test are the two functions isomorphic OR far-from being
isomorphic.

Monotonicity Testing Given a function from Rn to R is
it monotonic.

Learning of a Function Given access to the truth-table
of a functions can one learn it quickly.
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Examples of Graph properties

k-colorability Given a graph is it k-colorable OR far-from
being connected.

Connectivity Given a graph test is it connected OR
far-from being connected.

Isomorphism Testing: Given two graphs G1 and G2 test
are the two graphs isomorphic OR far-from being
isomorphic.

Structure of Big Graphs: Understanding the structures
of massive graphs (like the internet graph).
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Examples of Geometric Properties

Clustering: Given a set of point are they clusterable into
k clusters.

Classification: Can one learn the classifier easily.

Dimension Reduction: Can we reduce the dimension of
the data in hand.
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Examples of Properties of Distribution

Uniformity Testing: Is a given distribution uniform OR
is the `1 distance from uniform more than ε?

Equivalence Testing: Is a given distribution identical to
a known distribtuion OR are their `1 distance from uniform
more than ε?

Independence Testing: Given a joint distribution
uniform are the two individual distributions independent?

Learning: Given a distribution can we learn the
distribution.
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Our Goal ...

We want to design a randomized algorithm that answers
the promise problem correctly with high probability.

We want to look at a very small portion of the input.

In the rest of the talk we would not consider the running time
of an algorithm but rather the number of bits of the input that
is read. Accessing each bit of the input is called a QUERY.
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Property tester

Definition

Let P be a property. A tester for P is a randomized algorithm
A with black box access to an input x and satisfies:

If x ∈ P ⇒ Pr[A accepts] ≥ 2/3.

If x is ε-far from P ⇒ Pr[A rejects] ≥ 2/3.

We allow the algorithm to be adaptive (queries may depend on
the outcome of previous queries).
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Query Complexity

Query complexity for the tester A is the maximum number of
queries queried by the tester on any input.

Query complexity of a property P is the query complexity of
the tester that has the minimum query complexity.

Trivial example: let P be the property “x ≡ 0”. Then taking
O(1/ε) independent samples works w.h.p.
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Other connected areas...

Statistical estimation - In property testing we consider
more combinatorial objects like properties of Boolean
functions and graphs. .

Evasiveness and Certificate Complexity.

Probabilistically Checkable Proofs (PCP).

Locally Decodable Codes.
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Different Models

There are different models depending on:

Restricted error. [One-sided error or two-sided error]

How the input is represented? For example, is the graph
given as adjacency matrix or adjacency list or some other
way. [Dense graph model, sparse graph model, orientation
model in graph testing]

How the queries are made? [Classical, quantum]

Do we also want to accept inputs that are “close” to the
property? [Tolerant model and Intolerant Model]
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What kind of questions to ask?

Given a property P what is the query complexity for
testing P.

Design a property tester that tests P using O(q) number of
queries.
Prove that no property tester can test using less than Ω(q)
number of queries.

Classify the set of properties that can be tested using
constant number of queries.

Come up with the right model for testing.
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1-sided error testers

1-sided-error property tester

Let P be a property. A 1-sided-error property tester for P is a
randomized algorithm A with black box access to an input x
and satisfies:

(Completeness) If x ∈ P ⇒ Pr[A accepts] = 1.

(Soundness) If x is ε-far from P ⇒ Pr[A rejects] ≥ 2/3.

We allow the algorithm to be adaptive (queries may depend on
the outcome of previous queries).
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1-sided-error tester has its hands tied

The tester has to ACCEPT if the input satisfies the
property.

Hence, the only way the tester can reject is if it find a
PROOF that the input does not satisfy the property.

So if the input does not have the property then the tester
must find a PROOF/WITNESS with high probability.
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Typical 1-sided-error tester

1-sided-error algorithm

Query some bits of the input. The bits to be queried can be
either uniformly chosen or chosen in a cleaver co-related
fashion.

If the answers of the queried bits contains a WITNESS
that the input is not in the property then REJECT

Else ACCEPT

Goal is to use some nice structure for the property for making
the queries, like

the Szemeredi’s Regularity Lemma for graphs,

properties of Fourier coefficients for algebraic functions, etc

Usually, the proof of SOUNDNESS is the hard part.
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So what is the success probability of the tester?

Say the tester uses the random string r and queries the bits in
Qr (also say |Qr| = q). Then the probability of success is

Pr
r

[Qr contains a WITNESS].

Thus a 1-sided-error property tester can successfully test a
property P with q queries only if, an input x is “far” from P
implies there is a lots of WITNESS of size q hidden in x.
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Lower bounds for 1-sided-error testing

DN be a distribution on the the set of inputs that are far from
P.

The input x is chosen according to the distribution DN .

And now if one shows that any deterministic algorithms that
makes q queries will catch a WITNESS with very low
probability then we obtain a lower bound of q on the query
complexity for testing P.

For example: Checking whether f : [n]→ [n] is 1-to-1 or 2-to-1
requires at least

√
n queries. (By Birthday Paradox)
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2-sided-error property tester

2-sided-property tester

Let P be a property. A 2-sided-error tester for P is a
randomized algorithm A with black box access to an input x
and satisfies:

(Completeness) If x ∈ P ⇒ Pr[A accepts] ≥ 2/3.

(Soundness) If x is ε-far from P ⇒ Pr[A rejects] ≥ 2/3.

We allow the algorithm to be adaptive (queries may depend on
the outcome of previous queries).



Introduction Techniques Function Properties Graph Properties Isomorphism Testing

2-sided-error tester

The tester does not have to find a PROOF/WITNESS to
REJECT or ACCEPT.

The tester can use estimation/approximation as a tool.

For example: Distinguishing whether a string x ∈ {0, 1}n has
n/4 1′s OR n/3 1′s can be done using CONSTANT number of
queries.

In general 2-sided-error algorithms can be very complicated.
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Lower bounds for 2-sided-error testing

Let DN be a distribution on the the set of inputs that are far
from P and DY be a distribution on the the set of inputs that
satisfy P. The input x is chosen in the following manner:

With probability 1/2 the input x is chosen according to the
distribution DY
With the other 1/2 probability the input x is chosen
according to the distribution DN .

And now if one shows that any deterministic algorithms that
makes q queries cannot distinguish the two kind of inputs then
by Yao’s Lemma we obtain a lower bound of q on the query
complexity for testing P.

So, if the distribution of answers to the queries are similar when
the input is drawn according to DN and when it is drawn
according to DY then the query complexity is ≥ q.
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Testing of Function Properties

The property P is a set of functions from Σn → Σ. For
example: Linear functions, functions that are 1-to-1,
functions accepted by a constant width read-once
branching program etc.

The input is a truth-table of a function f : Σn → Σ.
Queries are of form: x ∈ Σn −→ f(x).

Property Tester for P
A 1-sided-error tester for P is a randomized algorithm A that
given query access to a truth-table of a function f does the
following:

If f ∈ P ⇒ Pr[A accepts] = 1.

If for at least ε|Σ|n number of strings in Σn the value of f
has to be changed so that the property P is satisfied then
Pr[A rejects] ≥ 2/3.
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Testing of Linearity

Linearity testing

Given query access to a Boolean function f : {0, 1}n → {0, 1}
test if f is linear, that is, if for all x, y ∈ {0, 1}n,
f(x)⊕ f(y) = f(x⊕ y).

The obvious test is the following: pick two random x, y ∈ {0, 1}n
and if f(x)⊕ f(y) 6= f(x⊕ y) then REJECT else ACCEPT.

Linearity Testing [Blum-Luby-Rubinfeld]

The above tester has the following properties:

If f is linear then the tester always ACCEPTS.

If f is ε-far from linear then the tester REJECTS with high
probability. (Proof using Fourier Analysis).



Introduction Techniques Function Properties Graph Properties Isomorphism Testing

Testing of Linearity

Linearity testing

Given query access to a Boolean function f : {0, 1}n → {0, 1}
test if f is linear, that is, if for all x, y ∈ {0, 1}n,
f(x)⊕ f(y) = f(x⊕ y).

The obvious test is the following: pick two random x, y ∈ {0, 1}n
and if f(x)⊕ f(y) 6= f(x⊕ y) then REJECT else ACCEPT.

Linearity Testing [Blum-Luby-Rubinfeld]

The above tester has the following properties:

If f is linear then the tester always ACCEPTS.

If f is ε-far from linear then the tester REJECTS with high
probability. (Proof using Fourier Analysis).



Introduction Techniques Function Properties Graph Properties Isomorphism Testing

Testing of Linearity

Linearity testing

Given query access to a Boolean function f : {0, 1}n → {0, 1}
test if f is linear, that is, if for all x, y ∈ {0, 1}n,
f(x)⊕ f(y) = f(x⊕ y).

The obvious test is the following: pick two random x, y ∈ {0, 1}n
and if f(x)⊕ f(y) 6= f(x⊕ y) then REJECT else ACCEPT.

Linearity Testing [Blum-Luby-Rubinfeld]

The above tester has the following properties:

If f is linear then the tester always ACCEPTS.

If f is ε-far from linear then the tester REJECTS with high
probability. (Proof using Fourier Analysis).



Introduction Techniques Function Properties Graph Properties Isomorphism Testing

Generalization of Linearity Testing

Given query access to a function f : Fn → F test if f is a degree
d polynomial.

Low-degree testing [Babai-Fortnow-Lund, Rubinfeld-Sudan]

The query complexity for testing degree d polynomials is a
function of |F| and d. When |F| = 2 then the query complexity
is 2d and when |F| is around d then the query complexity is
poly(d).

This tester in also used in Probabilistically Checkable Proofs
(PCP) [Arora-Safra, Arora-Lund-Motwani-Sudan-Szegedy]
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Degree d tester, when F > d.

Algorithm (For |F| > d)

Pick a random x ∈ Fn

Pick a random line through x. Pick a random y ∈ Fn and
consider all points of form x+ λy.

Query at all the |F| points.

If f is a degree d polynomial then restricted to this line it is
a degree d univariate polynomial in variable λ.

Use the points f(x+ λy), when λ 6= 0 to fit a degree d
polynomial.

If the polynomial evaluated at λ = 0 is equal to f(x) then
ACCEPT else REJECT.
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Testing Parity

Given access to the truthtable of a function f : {0, 1}n → {0, 1}
test if the function f is a parity of some k variables.

Can you show a upper bound independent of n?

Can you show a upper bound of O(klogk)?

Can you show a lower bound of Ω(k)?
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Testing of graph property

A property P is a set of graphs. For example: all bipartite
graphs, all graphs that is isomorphic to a particular graph,
all graphs where there exists a path from vertex 1 to vertex
2, ...

How is the graph given as input?
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Dense Graph Model

A property P is a set of graphs. For example: all bipartite
graphs, all graphs that is isomorphic to a particular graph, all
graphs where there exists a path from vertex 1 to vertex 2, ...

The graph is given as an adjacency matrix. The input size is(|V |
2

)
.

A query is of form: Is there an edge between vertex i and j?

Definition

A 1-sided-error tester for P is a randomized algorithm A that
given query access to a graph G does the following:

If G ∈ P ⇒ Pr[A accepts] = 1.

If at least ε
(|V |

2

)
number of entries of the adjacency matrix

has to be changed so that the property P is satisfied then
Pr[A rejects] ≥ 2/3.
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Testing of Bipartiteness in the dense graph model

Given query access to the adjacency matrix of a graph G, test if
G is bipartite of one has to remove ε

(|V |
2

)
edges to make it

bipartite.

Algorithm [Goldreich-Goldwasser-Ron]

Pick O(1/ε2 log(1/ε)) number of vertices at random.

Query all the pairs of selected vertices.

If the induced graph is not bipartite REJECT else
ACCEPT

Proof: If the graph is bipartite the algorithm always accept.

So now we have to prove that if G is ε-far from being bipartite
then the induced graph is not bipartite with high probability.
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Proof of Soundness of the Algorithm for Testing
Bipartiteness

Since it is a 1-sided-error algorithm for every possible
bipartition of the vertex set we should catch a violating edge,
that is edges within the same part.

If the graph is ε-far from being bipartite then any bipartition of
the vertex set will have at least ε|V |2 violating edges.

Note that given a particular bipartition by randomly sampling
of O(1/ε2) edges we would catch a violation for that bipartition
with high probability. But we have to catch for all the
bipartitions with high probability. Unfortunately, simple union
bound does not give the math as the number of such
bipartitions is 2|V |.
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Proof of Soundness of the Algorithm for Testing
Bipartiteness (contd...)

So we think of the selected vertices as two sets VA and VB.
Vertices VA induces the subgraph GA.

After we have queried the subgraph GA we show only a “small”
number of partitions survive with high probability.

And then we can say, using union bound, that the second set
VB helps to catch the violations for the small number of
surviving bipartitions.
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Various other Graph Properties

k-colorability of graphs −− O(k/ε).

Is there a clique of size ρn −− O(1/ε) number of queries.
(2-sided-error)

Triangle free-ness −− tower(1/ε). (Using Regularity
Lemma)
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What all can be tested?

Can we characterize all the graph properties that can be tested
by a 1-sided-error tester using constant number of queries.

Theorem (Alon-Shapira)

A graph property is called monotone if it is closed under
removal of edges and vertices. Every monotone graph property
is testable with constant number of queries.

The proof uses Szemeredi’s Regularity Lemma.
The proof roughly based on the idea that testing monotone
graph properties can be reduced to testing whether the graph
has a regular-partition with certain parameters.
And testing whether a graph has a regular-partition can be
tested with constant number of queries.
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In the dense-graph-model its all about regularity

Theorem (Alon-Fischer-Newman-Shapira)

A graph property P can be tested with a constant number of
queries if and only if testing P can be reduced to testing the
property of satisfying one of finitely many Szemeredi-partitions.
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Testing of Connectivity

Problem

Can we test whether in a graph is connected?

Actually, ... this problem does not make much sense - in the
dense graph model.
All graphs are just |V | changes away from being connected and
hence all graphs are ε-close to being connected.

So we need some other models for sparse-graph-properties.
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Sparse Graph Model

The input is a graph with m edges.

Queries are of the form: What is the ith neighbor of vertex
v?

If the degree of v is less than i then the answer to query is
“NONE”.

Property Tester for Bounded Degree Model

A 1-sided-error tester for P is a randomized algorithm A that
given query access to a graph G does the following:

If G ∈ P ⇒ Pr[A accepts] = 1.

If at least εm number of edges has to be added or removed
so that the property P is satisfied then Pr[A rejects] ≥ 2/3.
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Testing Connectivity in Sparse Graph Model

Observation

If a graph G is ε-far (in the sparse-graph-model) from being
connected then it has more than εm+ 1 connected components.
And thus it must have at least (ε/2)m number of components of
size at most 2n/εm.

Algorithm

Randomly pick 4n/εm vertices.

Do a BFS from each of the selected vertices till you find
2n/εm vertices.

If you find a component of size less than 2n/εm then
REJECT, else ACCEPT.
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Other problems that has constant query complexity in
the sparse graph model

Cycle-freeness,

Eulerianess,

subgraph freeness

All the above has similar algorithms to connectivity testing.
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Testing of st-connectedness

Problem

Can we test whether in a graph there is a path from a given
vertex s to another given vertex t?

Actually, ... this problem does not make much sense - in the
sparse graph model also.
All graphs are just 1 change away from having st-connectivity
and hence all graphs are ε-close to being st-connected.

So we need some other models for this.
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Orientation Model

The input graph is a directed graph.

The underlying un-directed graph is known in advance.

Queries are of the form: What is the orientation of the
edge e?

Property Tester for Orientation Model

A 1-sided-error tester for P is a randomized algorithm A that
given query access to a graph G does the following:

If G ∈ P ⇒ Pr[A accepts] = 1.

If at least εm number of edges has to be re-oriented so that
the property P is satisfied then Pr[A rejects] ≥ 2/3.
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Testing in the orientation model

st-connectivity [C-Fischer-Lachish-Matsliah-Newman]

There is a 1-sided-error tester that makes 22
2O(1/ε)

number of
queries and tests for st-connectivity in the orientation model (ε
is the distance parameter).

Other properties like Eulerianness has also been studied in
this model. But their query complexity is not constant.

Not many properties are known to have constant query
complexity in the orientation model.

Even proving that a constant size witness exist is also hard.
For example: If G is ε far from being s-to-all connected
then does there exist a constant size witness?
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Characterization in the Sparse-Graph-Model and
Orientation-Model

Characterization of properties that can be tested using constant
number of queries in the Sparse-Graph-Model. −− OPEN

Characterization of properties that can be tested using constant
number of queries in the Orientation-Model. −− OPEN
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What we saw till now...

Function Property Testing

Linearity, low degree, constant-width-read-once-BP,
k-juntas have constant query complexity
Testing of k parity.

Distribution Testing

Uniformity testing has query complexity Θ̃(
√
|Range|).

Graph Property Testing

k-colorability in dense graph model is testable with O(k)
queries,
Dense Graph Model - Testing is all about regularity,
Sparse Graph Model - testing of connectivity
Orientation Model - testing of s-connectivity
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Current directions....

Get tight query complexity for testing various properties.

Classify Boolean function properties that can be tested
using constant number of queries.

Connection to communication complexity: like connection
to gap-Hamming problem.

Get lower bounds on the query complexity (dependence on
ε) for graph properties: connection to additive
combinatorics.

Connection to LDC/PIR.

Connection to learning theory.
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Testing of Graph Isomorphism

Let H be a fixed graph. Then given query access to the
adjacency matrix of a graph G test if G is isomorphic to H or if
G is ε-far from being isomorphic to H.

Graph Isomorphism Testing [Fischer-Matsliah]

The 1-sided-query complexity for testing isomorphism to a fixed
graph is Θ̃(|V |), whereas the 2-sided-error query complexity is
Θ̃(
√
|V |).

GI Testing with constant number of queries [Fischer]

The query complexity for testing isomorphism to a fixed graph
is constant iff the given graph is close to a graph that is
generated by a constant number of cliques.
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Hyper-graph isomorphism testing and its generalizations

Hyper-Graph Isomorphism testing: Let H be a fixed
d-refular-hypergraph. Then given query access to the adjacency
matrix of a d-regular-hypergraph G test if G is isomorphic to H
or if G is ε-far from being isomorphic to H.

Testing Isomorphism under Group Operations: Let G
be a primitive subgroup of Sn. Let x ∈ {0, 1}n be a fixed string.
Then given a string y ∈ {0, 1} test if x is isomorphic to y under
permutation of the indices by elements of the group G, that is,
is there a π ∈ G such that for all i, xi = yπ(i), OR for all
π ∈ (G) for at least εn indices i, xi 6= yπ(i).
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Testing Isomorphism under Group Operations: Let G
be a primitive subgroup of Sn. Let x ∈ {0, 1}n be a fixed string.
Then given a string y ∈ {0, 1} test if x is isomorphic to y under
permutation of the indices by elements of the group G, that is,
is there a π ∈ G such that for all i, xi = yπ(i), OR for all
π ∈ (G) for at least εn indices i, xi 6= yπ(i).

Testing Isomorphism under Group Operations [Babai-C]

The query complexity for test isomorphism under primitive
group operation is Θ̃(log |G|). This implies the query complexity
for testing d-regular hypergraph isomorphism is Θ̃(|V |).
For 2-sided-error the bounds are Θ̃(

√
log |G|) and Θ̃(

√
|V |)

respectively.
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Boolean Function Isomorphism Testing

Let f : {0, 1}n → {0, 1} be a fixed function. Then given query
access to the truth-table of a function g test if g is isomorphic
to f upto a permutation of its variable, that is, does there exist
a permutation π ∈ Sn such that for all x, f(xπ) = g(x), where
xπi = xπ(i).

For example:

Is the function g a dictator function? −− Constant query
complexity.

Is the function a parity on k variable? −− Query
complexity O(k log k) and Ω(k)

Is the function isomorphic to Majority? −− Constant
Query Complexity.
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Boolean Function Isomorphism Testing

Let f : {0, 1}n → {0, 1} be a fixed function. Then given query
access to the truth-table of a function g test if g is isomorphic
to f upto a permutation of its variable, that is, does there exist
a permutation π ∈ Sn such that for all x, f(xπ) = g(x), where
xπi = xπ(i).

Boolean FI testing [Alon-Blais, C-Garcia-Soriano-Matsliah]

The 1-sided-error query complexity for testing isomorphism to a
k-junta is Θ(k log n) where as the 2-sided-error query
complexity is O(k log k).
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Characterization?

Just like in case of graph isomorphism Fischer proved that
query complexity is constant iff the graph is generated by a
constant number of cliques, can we say something like that for
function isomorphism.

We know isomorphism to k-junta takes only k log k queries.
Also isomorphism to a symmetric function takes constant
number of queries. Can we combine to say something like -

Conjecture

If f(x) depends on |X| and at most k indices then the query
complexity for testing isomorphism to f is O(k log k) and
Ω(log k).
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Conclusion

Function Property Testing

Linearity, low degree, constant-width-read-once-BP,
k-juntas have constant query complexity
Monotonicity - query complexity is Ω(n) and O(n2)
Testing distribution - uniformity testing has query
complexity Θ̃(

√
|Range|).

Graph Property Testing

k-colorability in dense graph model is testable with O(k)
queries,
Dense Graph Model - Testing is all about regularity,
Sparse Graph Model - testing of connectivity
Orientation Model - testing of s-connectivity

Isomorphism Testing

Generalization of GI testing
Isomorphism to k-junta can be tested with O(k log k)
queries.
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A teaser: What is this?



Guiding Problem

How can you test if the machine is truely random?



Testing of Distribution Properties

Given access to a distribution on domain of size n how many
queries/samples one need to test if the distribution has a
certain property or is “far” from having the property.

Eg:, the simplest and the most fundamental property to test is

“Is a distribution on {1, . . . , n} uniform on the domain?”

The distribution may be implicitly given.

Usually a query means drawing a random sample according
to the distribution.

Usually “far” means far in the variation distance.

HOW MANY QUERIES/SAMPLES ARE NECESSARY AND
SUFFICIENT?
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Importance of Distribution Testing

Distribution Testing is often the central problem in many
algorithms and protocols.

The real life application is huge.

1 Given a CNF formula producing a satisfying assignments
uniformly at random from the set of all satisfying
assignments is a crucial problem in the SAT-solver
community.
How to check if the output of a “claimed algorithm” is
according to the uniform distribution?

2 Checking if a random number generator is correct.
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Classical Sampling

The queries are sample drawn according to the distribution

“far” means total variation distance or the `1 distance.

Our Goal

To design an algorithm that, given access to random samples
drawn according to a distribution µ on {1, . . . , n}, will

ACCEPT, with probability 2/3, if µ is the uniform
distribution, and

REJECT, with probability 2/3, if µ is ε-far from being the
uniform distribution, that is, if the `1 distance from the
uniform distribution is at least ε.



Testing Uniformity using Classical Samples

Uniformity Testing [Batu-Fortnow-Rubinfeld-Smith-White]

2-side-error query complexity for testing uniformity is Θ̃(
√
k).



Sketch of Proof for Testing Uniformity

Uniformity Testing [Batu-Fortnow-Rubinfeld-Smith-White]

2-side-error query complexity for testing uniformity is Θ̃(
√
k).

Proof.

Upper bound: Take random
√
k samples and check if they fall

in different buckets. If they all fall on distinct buckets estimate
the fraction of elements that fall in these buckets.

Lower bound: Distinguishing whether µ is uniform with
support size k from µ is uniform with support size k/2 requires√
k queries. Just like distinguishing 1-to-1 function from 2-to-1

functions.
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The queries are sample drawn according to the distribution

“far” means total variation distance or the `1 distance.
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Figure: 1/2-far from uniform

If <
√
n/100 samples are drawn then with high probability

you see only distinct samples from either distribution.
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√
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you see only distinct samples from either distribution.



Although sublinear, not practical

Theorem (Batu-Fortnow-Rubinfeld-Smith-White (JACM 2013))

Testing whether a distribution is ε-close to uniform has query
complexity Θ(

√
n/ε2). [Paninski (Trans. Inf. Theory 2008)]

1 Given a CNF formula producing a satisfying assignments
uniformly at random from the set of all satisfying
assignments is a crucial problem in the SAT-solver
community.
How to check if the output of a “claimed algorithm” is
according to the uniform distribution?
Typically, number of variables in the formula ≈ 1000 and
the number of satisfying assignments ≈ 270.

Number of queries needed is around 235.
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If the machine outputs 12 digit numbers then

Number of times the machine has to be run is 106

times.
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More sophisticated models of sampling

In the literature more sophisticated models of querying has
been studied...

Quantum queries

Theorem (C-Fischer-Matsliah-Wolf (2011))

Testing if a distribution on domain size n is uniform has
quantum query complexity Θ̃(n1/3).

Many more has been studied ...

Conditional Sampling
Introduced independently by C-Fischer-Matsliah-Goldhirsh
(SICOMP 2016) and Cannone-Ron-Servedio (SICOMP
2015).
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Conditional Sampling

Definition (Conditional Sampling)

Given a distribution D on a domain D one can

Specify a set S ⊆ D,

Draw samples according to the distribution D|S, that is,
D under the condition that the samples belong to S.

Clearly such a sampling is at least as powerful as drawing
normal samples.
But how much powerful is it?
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Testing Uniformity Using Conditional Sampling
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An algorithm for testing uniformity using conditional sampling:

1 Draw two elements x and y uniformly at random from the
domain. Let S = {x, y}.

2 In the case of the “far” distribution, with probability 1/2,
one of the two elements will have probability 0, and the
other probability non-zero.

3 Now a constant number of conditional samples drawn from
D|S is enough to identify that it is not uniform.
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1 Draw two elements x and y uniformly at random from the
domain. Let S = {x, y}.

2 In the case of the “far” distribution, with probability 1/2,
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How about other distributions?
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Previous algorithm fails in this case:

1 Draw two elements x and y uniformly at random from the
domain. Let S = {x, y}.

2 In the case of the “far” distribution, with probability
almost 1, both the two elements will have probability same,
namely ε.

3 Probability that we will be able to distinguish the far
distribution from the uniform distribution is very low.
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A quick fix:

1 Draw x uniformly at random from the domain and draw y
according to the distribution D. Let S = {x, y}.

2 In the case of the “far” distribution, with constant
probability, x will have “low” probability and y will have
“high” probibility.

3 We will be able to distinguish the far distribution from the
uniform distribution using constant number of conditional
samples from D|S .

4 The constant depend on the farness parameter.
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Power of Conditional Samples

Theorem (C-Fischer-Matsliah-Goldhirsh (SICOMP 2016))

For testing if a distribution is uniform one needs only poly(1/ε)
number of conditional samples.

Theorem (Canonne-Ron-Servedio (SICOMP 2015))

For testing if a distribution is uniform one needs only θ̃(1/ε2)
number of conditional samples.
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Uniformity Tester using Conditional Sampling

Given µ over {1, . . . , n} and the distance parameter ε.

Uniformity Tester

1 Let S be a set of 10/ε samples drawn according to the
distribution;

2 Let T be a set of 10/ε samples drawn according to the
uniform distribution over {1, . . . , n};

3 Use classical uniformity tester to test if µ|S∪T is uniform
(with distance parameter 1/40ε2.

Proof of Correctness

Fact 1:With probability ≥ 8/9, ∃ i ∈ S with µ(i) ≥ 1
n(1 + ε

2)

Fact 2:With probability ≥ 8/9, ∃ i ∈ T with µ(i) ≤ 1
n
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Application to Real Life Problems

The main challenge for using conditional sampling in real life is:
Is conditional sampling implementable?

Recall the random satisfying assignment problem:

1 Given a CNF formula producing a satisfying assignments
uniformly at random from the set of all satisfying
assignments is a crucial problem in the SAT-solver
community.
How to check if the output of a “claimed algorithm” is
according to the uniform distribution?

Theorem (C-Meel (AAAI 2019))

Using conditional sampling we can design a “practical”
algorithm that given black box access to an algorithm can test if
the algorithm indeed performs the task properly.
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How about the Lottery Machine Problem

2 Checking if a random number generator is correct.

In Lottery Machine we can easily draw conditional samples
when the set S is of the form S1 × S2 × . . . , where the
Si ⊆ {0, 1, . . . , 9}.
But recall that for our algorithm for testing uniformity the
set S can be any two elements in the domain and not
necessarily of the special structure for which we can
execute the conditional samples.
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Conditional Sampling on Structured Domain

Theorem (Bhattacharyya-C (ToCT 2018))

When the domain is of the form D1 ×D2 × · · · ×Dm and
conditional sample can be drawn for sets of form S1 × · · · × Sm,
where Si ⊆ Di, then Ω(m) number of conditional samples are
necessary and O(m2) number of samples are sufficient.



Further Works related to Conditional Testing

Many different extension and directions are being investigated.
For example:

Quantum Conditional Sampling
(Sardharwalla-Strelchuk-Jozsa (QIC 2016)).

Big data (Canonne-Rubinfeld (ICALP 2014))

Learning using Conditional Sampling
(Aliakbarpour-Blais-Rubinfeld (COLT 2016))

New Computational Model (Gouleakis-Tzamos-Zampetakis
(SODA 2018))

A good survey for this area is
“A Chasm Between Identity and Equivalence Testing with
Conditional Queries”by Jayadev Acharya, Clément L. Canonne
and Gautam Kamath.



Latest set of works related to Distribution Testing

New proofs of old theorems

Tolerant Testers

Testing with Noise

Learning of Distributions

Different distance parameters

Connection to PCPP

A nice collection of talks/surveys on this topic can be found in
the webpage of “Frontiers in Distribution Testing” workshop
(held at FOCS 2017). The link can be found from the webpage
of Clement Canonne.



Future Direction

One of the most important problem of the present and
future is testing if an algorithm is correct. Property testing
has a big role to play.

Major challenge: To model the problems properly.

Interesting progress has been made in recent times on
applying property testing successfully to real life problems.

Lots of interesting and challenging theoretical problems
arise.
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