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Matrix approximation

Problem (Matrix Approximation)

Input: A (binary) m × n-matrix A = (aij) ∈ {0, 1}m×n.

Task: Find a (binary) m × n matrix B that satisfies certain
conditions and approximates A.

It is standard to use the Frobenius norm (or its square):

‖A‖F =

√√√√ m∑
i=1

n∑
j=1

a2ij .

Task: For a given integer k, find B such that ‖A− B‖2F ≤ k .

Equivalently, for the binary case, find B such that dH(A,B) ≤ k.
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Binary r-Means

Condition: B has at most r distinct columns.

Problem (Binary r-Means)

Input: A binary m × n-matrix A with columns (a1, . . . , an),
r ∈ N and a nonnegative integer k.

Task: Find a partition (some sets may be empty)
{I1, . . . , Ir} of {1, . . . , n} and vectors
c1, . . . , cr ∈ {0, 1}m (called means) such that

r∑
i=1

∑
j∈Ii

dH(ci , aj) ≤ k .
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Binary r-Means

Equivalently,

Task: Find vectors c1, . . . , cr ∈ {0, 1}m (called means) such
that

n∑
i=1

min
1≤j≤r

dH(cj , ai ) ≤ k .

Equivalently,

Task: Construct a binary matrix B with at most r pairwise
distinct columns from A by at most k editing
operations.
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Binary r-Means

A =


0 0 0 1 0 1 1 0
0 1 1 0 0 0 1 1
1 0 1 1 0 1 0 1
0 0 0 0 1 1 1 1
1 1 0 0 1 1 0 0


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Binary r-Means
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Binary r-Means

A =


0 1 1 0 0 1 0 0
0 0 0 1 0 1 1 1
1 1 1 1 0 0 1 0
0 0 1 0 1 1 1 0
1 0 1 0 1 0 0 1



c1 =


1
0
1
0
1

 c2 =


0
0
1
0
0

 c3 =


0
1
0
1
0


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Binary r-Means

A =


0 0 0 1 0 1 1 0
0 1 1 0 0 0 1 1
1 0 1 1 0 1 0 1
0 0 0 0 1 1 1 1
1 1 0 0 1 1 0 0



B =


1 0 0 1 0 1 0 0
0 1 0 0 0 0 1 1
1 0 1 1 1 1 0 0
0 1 0 0 0 0 1 1
1 0 0 1 0 1 0 0


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Low GF(2)-Rank Approximation

Condition: The GF(2)-rank of B is at most r .

Problem (Low GF(2)-Rank Approximation)

Input: A binary m × n-matrix A, r ∈ N and a nonnegative
integer k.

Task: Find a binary m × n-matrix B with GF(2)-rank ≤ r
and dH(A,B) ≤ k.
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Low GF(2)-Rank Approximation

Equivalently,

Task: Find vectors c1, . . . , cr ∈ {0, 1}m such that

n∑
i=1

min{dH(c, ai ) | c ∈ span(c1, . . . , cr )} ≤ k .

Observation: |span(c1, . . . , cr )| ≤ 2r .
Equivalently,

Task: Construct a binary matrix B of rank at most r from
A by at most k editing operations.
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Classical complexity

Theorem (Feige, 2014)

Binary 2-Means is NP-complete.

Theorem (Dan et al., 2015, Gillis and Vavasis, 2015)

Low GF(2)-Rank Approximation is NP-complete for r = 1.
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Parameterized Complexity

Parameterized Complexity is a two dimensional framework for
studying the computational complexity of a problem.

One dimension is the input size |I | and the other is a parameter k
associated with the input.

A parameterized problem is said to be fixed parameter tractable
(FPT) if it can be solved in time f (k) · |I |O(1) for some function f .
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Parameterized Complexity

Observation
Low GF(2)-Rank Approximation can be solved in time
(r + 1)2k · (nm)O(1).
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Parameterized Complexity

Set B := A.

If rank(B) ≤ r , then return B.

Otherwise, find an (r + 1)× (r + 1)-submatrix of B of rank r + 1
and branch on its elements:

B =



b11 · · · b1r+1 b1r+2 · · · b1n
...

. . .
...

...
. . .

...
br+11 · · · br+1r+1 br+1r+2 · · · br+1n

br+21 · · · br+2r+1 b1r+2 · · · b1n
...

. . .
...

...
. . .

...
bm1 · · · bmr+1 bmr+2 · · · bmn


The depth of the search tree is at most k.
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Kernels

A kernelization algorithm for a parameterized problem Π is a
polynomial algorithm that maps each instance (I , k) of Π to an
instance (I ′, k ′) of Π such that

(i) (I , k) is a yes-instance of Π if and only if (I ′, k ′) is a
yes-instance of Π, and

(ii) |I ′|+ k ′ is bounded by f (k) for a computable function f .

(I ′, k ′) is a kernel and f is its size.

A kernel is polynomial if f is polynomial.
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Kernelization for Binary r-Means

Theorem
Binary r-Means parameterized by r and k has a kernel of size
O(k2(k + r)2). Moreover, the kernelization algorithm outputs an
instance of Binary r-Means with the matrix that has at most
k + r pairwise distinct columns and O(k(k + r)) pairwise distinct
rows.
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Sketch of the proof

Let (A, r , k) be an instance of Binary r-Means.
A = (a1, . . . , an)

Claim: If (A, r , k) is a yes-instance, then it has a solution such
that the same columns of A are in the same cluster.

Let c1, . . . , cr be means. Then the columns of A are clustered by
selecting a closest mean.
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Sketch of the proof

Reduction rules:

• If A has at most r pairwise distinct columns, then return a
trivial yes-instance and stop.

• If A has at least r + k + 1 pairwise distinct columns, then
return a trivial no-instance and stop.

• If A has at least k + 2 columns that are the same, then delete
one of them.

We obtain A = (a1, . . . , an) such that A contains at most
(k + 1)(r + k) columns and at most k + r of them are pairwise
distinct.
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Sketch of the proof

We construct the partition S = {S1, . . . ,St} of {1, . . . , n}:

Let I = {1, . . . , n} \
⋃i−1

j=0 Sj (we assume that S0 = ∅).

• Set Si = {s} for arbitrary s ∈ I and set I = I \ {s}.
• While there is j ∈ I such that dH(aj , ah) ≤ k for some h ∈ Si ,

then set Si = Si ∪ {j} and set I = I \ {j}.

A = ( . . .︸︷︷︸
S1

| . . .︸︷︷︸
S2

| . . . | . . .︸︷︷︸
St

)

Claim: for every cluster in a solution, the indices of its columns
are in the same Si .

Reduction rule: If t ≥ r + 1, then return a trivial no-instance and
stop.
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Sketch of the proof

Let Ai = A[{1, . . . ,m},Si ] for i ∈ {1, . . . , t}.

A row of a matrix is uniform if all its elements are the same.

Observation: uniform rows are irrelevant for Binary r-Means.

Claim: Ai has at most (`i − 1)k ≤ (r + k)k non-uniform rows,
where `i is the number of pairwise distinct columns of Ai .

For i ∈ {1, . . . , t}, construct A′i from Ai by the deletion of
m − (r + 1)k uniform rows.
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Sketch of the proof

Observation: A′1, . . . ,A
′
t give a Turing kernel.

Return

A′ =


A′1 A′2 · · · A′t
11 02 · · · 0t

01 12 · · · 0t
...

...
. . .

...

01 02 · · · 1t


where 0i and 1i are dk+1

2 e × |Si |-matrices composed by 0-s and 1-s
resp.
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Kernelization for Low GF(2)-Rank Approximation

Theorem (Fomin et al. 2018)

Low GF(2)-Rank Approximation parameterized by r and k
admits a kernel such that the output matrix has at most (r + 1)k
row and columns.
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Subexponential algorithms

Theorem
Binary r-Means parameterized by r and k has a kernel of size
O(k2(k + r)2). Moreover, the kernelization algorithm outputs an
instance of Binary r-Means with the matrix that has at most
k + r pairwise distinct columns and O(k(k + r)) pairwise distinct
rows.

Corollary

Binary r-Means can be solved in time r r+k · (nm)O(1).

Observation
Low GF(2)-Rank Approximation can be solved in time
(r + 1)2k · (nm)O(1).
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Binary r-Means

Theorem
Binary r-Means can be solved in time 2O(

√
rk log(r+k) log r) · nm.
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Sketch of the proof

Let (A, r , k) be an instance of Binary r-Means,
A = (a1, . . . , an).

We apply the kernelization algorithm that either solves the problem
or outputs an instance (A, r , k) such that

• A has at most k + r pairwise distinct columns and

• A has at most O(k(k + r)) pairwise distinct rows.

Task: Find means c1, . . . , cr ∈ {0, 1}m such that

n∑
i=1

min
1≤j≤r

dH(cj , ai ) ≤ k .
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Sketch of the proof

We assume that

• the means c1, . . . , cs , s ≤ r , are already selected,

• some columns of A are already assigned to the chosen means
and A∗ = (a1, . . . , ap) is composed by the remaining columns
of A.

• the budget k is adjusted respectively.

If p ≤ r − s or

p∑
i=1

min{dH(ai , cj) | 1 ≤ j ≤ s} ≤ k ,

then the problem is solved.

If s = r or k ≤ 0, then (A, r , k) is a no-instance.
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Sketch of the proof

We guess the minimum distance h ≤ k between a new mean cs+1

and a column ai in the new cluster.

If
d = min{dH(ai , cj) | 1 ≤ j ≤ s} ≤ h − 1,

then we include ai in one of the old clusters and set k := k − d .

Let A∗∗ = (a1, . . . , aq) be the matrix composed by the remaining
columns, and let ` = O(k(k + r)) be the number of pairwise
distinct rows of A∗∗.
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Sketch of the proof

If q ≤
√
rk log `/ log r , we try all possible partitions of the set of

columns of A∗∗ into at most r − s clusters by brute force (in fact,
into r − s + 1 clusters).

We have at most (r − s + 1)
√

rk log `/ log r or 2O(
√
rk log ` log r)

possibilities.

Since ` = O(k(k + r)), the running time is 2O(
√

rk log(r+k) log r).
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Sketch of the proof

Let q >
√
rk log `/ log r .

Observation: For a yes-instance, h ≤ k/q ≤
√
k log r/(r log `).

We branch:

• for every i ∈ {1, . . . , q} and every cs+1 at distance h from ai ,
solve the problem for c1, . . . , cs , cs+1 and A∗∗.

Because A has O(k(k + r)) pairwise distinct rows, the number of
branches for each column is at most
`
√

k log r/(r log `) = 2O(
√

k/r log r log(k+r)).

The depth of the search tree is at most r and the number of leaves

is 2O(
√

rk log(r+k) log r).
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Low Rank Approximation

Theorem
Low GF(2)-Rank Approximation can be solved in time

2O(r
√

k log(rk)) · nm.

Task: Find vectors c1, . . . , cr ∈ {0, 1}m such that

n∑
i=1

min{dH(c, ai ) | c ∈ span(c1, . . . , cr )} ≤ k .
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Weaker parameterizations

Theorem (Feige, 2014)

Binary 2-Means is NP-complete.

Theorem (Dan et al., 2015, Gillis and Vavasis, 2015)

Low GF(2) is NP-complete for r = 1.
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Binary r-Means parameterized by k

Theorem
Binary r-Means can be solved in time 2O(k log k) · (nm)O(1)

(r is a part of the input).
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Idea of the proof

Let (A, r , k) be an instance of Binary r-Means.

Claim: If (A, r , k) is a yes-instance, then it has a solution such
that the same columns of A are in the same cluster.

We say that an inclusion maximal set of identical columns of A is
an initial cluster.

Let (A, r , k) be a yes-instance with a given solution.

• A cluster of the solution is simple if it is an initial cluster, and

• a cluster is composite otherwise.
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Highlighting elements of composite clusters

Claim: If (A, r , k) is a yes-instance, then every solution has at
most k composite clusters and at most 2k initial clusters are in
composite clusters.

We apply the color coding technique (Alon, Yuster, and Zwick).

We guess the number s of initial clusters that are in composite
clusters in a solution and the number t of composite clusters.

We color the initial clusters uniformly at random by s colors.

If (A, r , k) is a yes-instance, then the probability that the initial
clusters in a solution are colored by distinct colors is

s!

ss
≤ (2k)!

(2k)2k
∼ e−2k .
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Highlighting elements of composite clusters

A =


1 1 1 1 1 0 0 1 0 · · · 0 0 1 1
1 1 0 0 0 1 1 0 0 · · · 0 0 1 1
0 0 1 1 1 0 0 1 1 · · · 0 0 0 0
0 0 1 1 1 1 1 0 0 · · · 1 1 1 1
0 0 0 0 0 0 0 1 1 · · · 0 0 1 1


We are looking for a colorful solution, where exactly one initial
cluster from each color class is included in a composite cluster.

For each composite cluster, we guess the color classes containing
its initial clusters.

The number of guesses is at most ts ≤ k2k .
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Cluster selection

Problem (Cluster Selection)

Input: A binary m × p-matrix A = (a1, . . . , ap), a partition
{I1, . . . , Iq} of {1, . . . , p} such that the indices of
each initial cluster are in the same element of the
partition, and a non-negative integer d.

Task: Find a vector c ∈ {0, 1}m and initial clusters
J1, . . . Jq such that

• Ji ⊆ Ii for i ∈ {1, . . . , q},
•
∑q

i=1

∑
j∈Ji dH(c, aj) ≤ d.
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Cluster selection

Lemma
Cluster Selection can be solved in time 2O(d log d) · (pm)O(1).
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Idea of the proof

A =


· · · · · · · · · · · · · · · · · · · · · · · ·
· · · 1 1 1 · · · · · · 0 0 · · · · · · 1 1

· · · · · · · · · · · · · · · · · · · · · · · ·
· · · 0 0 0 · · · · · · 1 1 · · · · · · 1 1

· · · · · · · · · · · · · · · · · · · · · · · ·


Claim: There are 2O(d log d) · (dm)O(1) subsets of {1, . . . ,m},
where the columns of the selected initial cluster can differ from a
mean c, and these subsets can be enumerated in time
2O(d log d) · (dm)O(1).

D. Marx, Closest substring problems with small distances, SIAM J.
Comput., 38 (2008), pp. 1382–1410.
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Lower bounds

Theorem
Binary r-Means has no polynomial kernel when parameterized
by k unless NP ⊆ coNP/poly.

Theorem (Fomin et al., 2017)

Low GF(2)-Rank Approximation is W[1]-hard when
parameterized by k.
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Our results

• Binary r-Means can be solved in time 2O(k log k) · (nm)O(1).

• Binary r-Means has a kernel of size O(k2(k + r)2) when
parameterized by k and r .

• Binary r-Means has no polynomial kernel when
parameterized by k only unless NP ⊆ coNP/poly.

We obtain FPT algorithms for the problems parameterized by r
and k that are subexponential in k .

• Binary r-Means can be solved in time
2O(
√

rk log r log (k+r))nm.

• Low GF(2)-Rank Approximation can be solved in time

2O(r ·
√

k log(rk))nm.
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Open problems

• Can Binary r-Means be solved in time 2O(k) · (nm)O(1)?

• Can Binary r-Means and/or Low GF(2)-Rank

Approximation be solved in time 2f (r)
√
k · (nm)O(1)?

• What can be said about parameterized complexity of Matrix
Approximation for matrices over different fields and for
different measures?

• In particular, what can be said about r-Means for matrices
over Z and Frobenius norm?
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Thank You!
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