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Invitation to :
Fixed-Parameter

Algorithms

Is it all about graphs?




Toy prabi&m

Given a set of points in
R4, find r-dimensional
linear subspace
containing them




Problem

Given a set of points in
R4, find r-dimensional
linear subspace that is a
best fit to them

\!

Sum of distances?




Makrix vi;@.wpc;m&

St
Input mabrix M, find

rank r mwabrix L such that
the sum of dif«fe =13

m ~L s minimized.

Rows of |




Principal component analysis (PCA)

minimize |

— L||%
subject to pank(L) < r.\

Hau ! 2 » — |
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L Erobenius norm Source: Wikipedia

Sum of the squares of the Eucledion distances bebween rows (columns)

of m-L

[Eckart & Young, 1936]




PCA minimize | M — L||%
subject to rank(L) < r.

Singular Value Decomposition (SVD)

Stingular vector

-
Lo } :Oiuwéf v; = arg max | M|
g=at UiJ—U17U27"'7vi—1
"UZ'| =]
Stihgular value
0, — | Mud
1 Left-sinqular vector
U; — —M?JZ'
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[Eckart & Young, 1936]




PCA is not robusk

Some observakions are
ﬁarrupﬁed

How to reveal information
about V\onnaorrupﬁad
observations?




Robust PCA

number of non-zero elememnts

sparse t:ompm\em% \
\1 \
minimize rank(L) + ||S||o

i \ subject to M = L + S

Llow rank

dabka mwakrix

[Candes, Li, and Wright, 2011]

[Chandrasekaran et al.,, 2011]




This is an instance of a fundamental and
largely unexplored question

“Coan we reconcile compukbabional
e{&tmmcj and robustness in
umsupérvised learning?”

~-Moritz Hardtk and Anlkeur Moikra




Robuskt PCA

minimize rank(L) + ||S||o
subject to M = L + S

Matrix Rigidity

IMFME: Mir e
Task: Change ot most k entries of M such that the
resulting makbrix is of rank at most r




Robuskt PCA

Task: Change at most « enbries of m such that the
resulting matrix is of rank ot most r

NP-complete for every rro
W[ 1]-hard Farame&eriz.ed b-j v

We will see FPT pmame&eriz.ed bj r+ie!




Pre pro&essi&ag
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MATRIX RIGIDITY FROM THE VIEWPOINT OF
PARAMETERIZED COMPLEXITY™

FEDOR V. FOMINT, DANIEL LOKSHTANOV', S. M. MEESUM?*, SAKET SAURABHS,
AND MEIRAV ZEHAVI'

Abstract. For a target rank r, the rigidity of a matrix A over a field F is the minimum Hamming
distance between A and a matrix of rank at most r. Rigidity is a classical concept in computational
complexity theory: constructions of rigid matrices are known to imply lower bounds of significant
importance relating to arithmetic circuits. Yet, from the viewpoint of parameterized complexity, the
study of central properties of matrices in general, and of the rigidity of a matrix in particular, has been
neglected. In this paper, we conduct a comprehensive study of different aspects of the computation
of the rigidity of general matrices in the framework of parameterized complexity. Naturally, given
parameters r and k, the MATRIX RIGIDITY problem asks whether the rigidity of A for the target rank
r is at most k. We show that in the case F = R or F is any finite field, this problem is fixed-parameter
tractable with respect to k+r. To this end, we present a dimension reduction procedure, which may
be a valuable primitive in future studies of problems of this nature. We also employ central tools
in real algebraic geometry, which are not well known in parameterized complexity, as a black box.
In particular, we view the output of our dimension reduction procedure as an algebraic variety. Our




Robusk PCA

Iupu,&: nxd makrix M, integers r, k
Task: Change at most 1« enbries of m such that the
resulting matrix is of rank at most r

Main idea: polytime Fro&adure reducing (M,rk) to
equivalent tnstance (W k), where makrix M’ is O(rik)x0(rk)
makrix




SE@.F ik ‘Prepracessivxg

If M has rr1 independent columns, at least one entry of
these colummns should be changed

Cl C €3 C4 Cy, € C7 Cg (9

Choose a set of 7 4 1 linearly independent columns.




SE@.F ik ?re.pracessivxg

If M has rr1 independent columns, at least one entry of
these colummns should be changed

Repeat at most k£ + 1 times.




SE@.F ik ‘Prepracessivxg

If M has rr1 independent columns, at least one entry of
these colummns should be changed

If we obtained k+1 sebs of r+1 independent colums,
then the answer is




S&ap ik ?re_’oracessivxg

1f there are no r+1 independent columns, select a basis.

Cl C3 Cg|C2 Cq4 Cg8 | Cs C7 C9




‘Preyroaessivxg algorithm

- Algorithm. USELESS-COLUMNS
- INPUT : A, 7, k.

@ LetU < A.

@ Repeat at most k£ + 1 times or till U is empty:

o If rank(U)>r+1

then delete r 4+ 1 linearly independent columns from U.
o If rank(U) <r

then delete a column basis from U.

© Output U.




SE@.F ik ‘Prepracessivxg

* The resulking matrix U has abt most (k+1)x(r+1) columns,
* U is a yes-instance if and only i M is.

* Proof: plgeonhole principle




SE@.F ik ‘Prepracessivxg

* Run the same preprocessing on rows, resulks in makrix
wibth ot mostk (lkrDIx(r+1) columins and (e+1Ix(r+1) rows.
“ 151t @ poijmomiai kernel?

* How ko solve bhe prubieﬁ,m?




SE@.F 11. Algorithm

Gruess the span of makrix S from m=L+S (Ehis is O(ri)x0(ri)
mabkrix with ab most k hon-zero elements). Total rio®
quesses. Lach hon-zero em&rv of S is a variable.

Matrix M-S is of rank ot most r f and only if its each
(r+1)x(r+1) submakbrix has zero determinant. (In kokal ricow

submakrices.) /

Polynomial equation with at most k variables and of
deqree at most k




Fack

Given a set P of £ polynomaials of degree d in k variables with integer coefficients
of bit length L, we can decide the feasibility of P with Llog Lloglog L(¢-d)©*)
bit operations.




Theorem. Robusk PCA is solvable in kime
Fmi.j(M) heyOUker)

We have to assume that makbrix M is integer (or rational)




Exercise, Show that the following variant of Robust PCA is
FPT parameterized by k and r.

Ihpu&: M, T, k
Task: Change at most k rows of M such that the
resulting makbrix is of rank at wost r




oukbliers

ICML19

Refined Complexity of PCA with Outliers

Fedor Fomin“' Petr Golovach“! Fahad Panolan”! Kirill Simonov "'

Abstract

Principal component analysis (PCA) is one of the
most fundamental procedures in exploratory data
analysis and is the basic step in applications rang-
ing from quantitative finance and bioinformatics
to image analysis and neuroscience. However, it
is well-documented that the applicability of PCA
in many real scenarios could be constrained by
an “immune deficiency” to outliers such as cor-
rupted observations. We consider the following
algorithmic question about the PCA with outliers.
For a set of n points in R%, how to learn a subset
of points, say 1% of the total number of points,

PR FOEVL ISR SR SOV U USSR o B AP P S

low-rank approximation of data matrix M by solving

minimize | M — L||%
subject to rank(L) < r.

Here ||A]|% = D a?; is the square of the Frobenius

norm of matrix A. By the Eckart-Young theorem (Eckart
& Young, 1936), PCA is efficiently solvable via Singular

Valuie Necamnacitinn (QVIN P(CA ic nead ac a nrenrncecc-



PCA with oukliers

How to identify k points such that n-k remaining points
fit well to an r-dimensional subspace?




Makhematical model

PCA witH OUTLIERS
Input: Data matrix M € R™*?  integer parameters r and k.
Task:

minimize |M — L —S|%

subject to L,S e R
rank(L) < r, and

S has at most k£ non-zero rows.

How to E,ciev\ﬁnf-j k points
such that n-k remaining
points fik well to an r-
dimensional subsgaae?




Relabed worke

Robust PCA

sparse ﬂOMF’OMQM&

Ve

Me "B F 15

s g

low ranke

daka mwakbrix

[Candes, Li, and Wright, 2011]

[Chandrasekaran et al.,, 2011]

Noi‘.,s'j Robust PCA

sparse ﬂampav\emﬁ

&

Llow ranie

daka makrix

[Wright et al., 2009]




Theorem Robust PCA can be solved bj
solving n2@) instances of PCA

PCA wiTH OUTLIERS

Input: Data matrix M € R™*?_ integer parameters r and k.

Task:

minimize |M — L — S||%

subject to L,S e R™4
rank(L) < r, and
S has at most k£ non-zero rows.




Skebch of the Fraof

Inkuikion:

A=2, =1, r=1




Skebch of the [orc»c;wf

unit vector defining r-dimensional subspace

5
P;;(V) = lVm; | = [[Vm; |5

i atgebraia set W

polynomials /

Cell C<W sk, for all V in C the signs of all

Fotvvxomiats do not change |
\;

For each cell C take some V from C, construct orthogonal

subsryo\ca, remove the furthermost k Pom&s, run PCA on
remaining n-k points




Skebtch of the proof

The number of times we call PCA is proportional to the
number of cells

2
The number of cells is PO ) ek

the cells can be conskructed

wibthin the same ruhhihg Eine Saugata Basu
) Richard Pollack

Marie-Francoise Roy

Algorithms in

Real Algebraic
Geometry




Nabkural ques&ioms

Is the running time ;0(7°) the best we can hope for?

Could PCA with ocutliers be solved in Fotvmcwmmi.
Eime?

Could PCA with outliers be solved in time £{A)now@?




Exponential Time Hypothesis (ETH)

(ETH) 3-SAT with W variables and mw clauses

cannol be solved in time 20Mrrm)

[Impagliazzo, Paturi, and Zane, Roo1l]




Theorem. For ahy c»l, there is no c~approx£ma&ion
algorithm for with running time
fd) No&  for any computable function f  unless
ETH fails, where N is the bitsize of the input
makrix M,

Proof: Reduction from




PCA with Ou,ﬂcers

Saninot be solvalin tine |
| f(d)| Mo ,

#'; ’M‘O(d2) i 3




Conclusion

o Robusk PCA £7PT Farame&rizﬁzd bv d
and I

o PCA with outliers: W algorithm




O-Fw.m qu@.s%mms

o Robust PCA in kime )

o PCA with outliers f(r)-approximation
LA Fw-tv time







