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Parameterized Complexity

Is it all about graphs?



Toy problem

Given a set of points in 
Rd, find r-dimensional 
l i n e a r s u b s p a c e 
containing them



Problem

Given a set of points in 
Rd, find r-dimensional 
linear subspace that is a 
best fit to them

Sum of distances?



Matrix viewpoint

m

l

m-l

Input matrix M, find 
rank r matrix L such that  
the sum of differences  
m -l is minimized. 

Rows of M

Rows of L



Principal component analysis (PCA)

minimize kM � Lk2F
subject to rank(L)  r.

[Eckart & Young, 1936] 

||A||2F =
X

i,j

a2ij//

Frobenius norm Source: Wikipedia

Sum of the squares of the Eucledian distances between rows (columns) 
of M-L



PCA minimize kM � Lk2F
subject to rank(L)  r.

[Eckart & Young, 1936] 

Singular Value Decomposition (SVD) 

LOPT =
rX

i=1

�iuiv
T
i

ui =
1

�i
Mvi

�i = |Mvi|

vi = argmax |Mv|
vi ? v1, v2, . . . , vi�1

|vi| = 1

Singular vector 

Singular value

Left-singular vector 



PCA is not robust
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Refined Complexity of PCA with Outliers

Anonymous Authors1

Abstract
Principal component analysis (PCA) is one of the
most fundamental procedures in exploratory data
analysis and is the basic step in applications rang-
ing from quantitative finance and bioinformatics
to image analysis and neuroscience. However, it
is well-documented that the applicability of PCA
in many real scenarios could be constrained by
an “immune deficiency” to outliers such as cor-
rupted observations. We consider the following
algorithmic question about the PCA with outliers.
For a set of n points in Rd, how to learn a subset
of points, say 1% of the total number of points,
such that the remaining part of the points is best
fit into some unknown r-dimensional subspace?
We provide a rigorous algorithmic analysis of the
problem. We show that the problem is solvable in
time nO(d2

). In particular, for constant dimension
the problem is solvable in polynomial time. We
complement the algorithmic result by the lower
bound, showing that unless Exponential Time Hy-
pothesis fails, in time f(d)n

o(d), for any function
f of d, it is impossible not only to solve the prob-
lem exactly but even to approximate it within a
constant factor.

1. Introduction

Problem statement and motivation. Classical principal
component analysis (PCA) is one of the most popular and
successful techniques used for dimension reduction in data
analysis and machine learning (Pearson, 1901; Hotelling,
1933; Eckart & Young, 1936). In PCA one seeks the best
low-rank approximation of data matrix M by solving

minimize kM � Lk2F
subject to rank(L)  r.

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

Here ||A||2F =

P
i,j a

2

ij is the square of the Frobenius
norm of matrix A. By the Eckart-Young theorem (Eckart
& Young, 1936), PCA is efficiently solvable via Singular
Value Decomposition (SVD). PCA is used as a preprocess-
ing step in a great variety of modern applications including
face recognition, data classification, and analysis of social
networks.

In this paper we consider a variant of PCA with outliers,
where we wish to recover a low-rank matrix from large but
sparse errors. Suppose that we have n points (observations)
in d-dimensional space. We know that a part of the points are
arbitrarily located (say, produced by corrupted observations)
while the remaining points are close to an r-dimensional true
subspace. We do not have any information about the true
subspace and about the corrupted observations. Our task is
to learn the true subspace and to identify the outliers. As a
common practice, we collect the points into n ⇥ d matrix
M , thus each of the rows of M is a point and the columns
of M are the coordinates. However, it is very likely that
PCA of M will not reveal any reasonable information about
non-corrupted observations—well-documented drawback
of PCA is its vulnerability to even very small number of
outliers, an example is shown in Figure 1.

Figure 1. An illustration on how outliers impact PCA. The optimal
approximation line (in dashed) of the given set of points without the
evident outlier shows the linear structure of the dataset. However,
when the outlier is present, the principal component (in solid)
changes drastically.

Some observations are 
corrupted 

How to reveal information  
about non-corrupted  
observations? 



Robust PCA 

M = L+ S

low rank

sparse component

data matrix

[Candès, Li, and Wright, 2011] 

[Chandrasekaran et al.,  2011]

number of non-zero elements

minimize rank(L) + kSk0
subject to M = L+ S



–Moritz Hardt and Ankur Moitra

“Can we reconcile computational 
efficiency and robustness in 

unsupervised learning?”

This is an instance of a fundamental and 
largely unexplored question



Robust PCA  

minimize rank(L) + kSk0
subject to M = L+ S

Input: M, r, k 
Task: Change at most k entries of M such that the  
resulting matrix is of rank at most r

Matrix Rigidity



Robust PCA  

Input: M, r, k 
Task: Change at most k entries of M such that the  
resulting matrix is of rank at most r

NP-complete for every r>0 
W[1]-hard parameterized by k 

We will see FPT parameterized by r+k! 



SIAM J. DISCRETE MATH. c⃝ 2018 Society for Industrial and Applied Mathematics
Vol. 32, No. 2, pp. 966–985

MATRIX RIGIDITY FROM THE VIEWPOINT OF
PARAMETERIZED COMPLEXITY∗

FEDOR V. FOMIN† , DANIEL LOKSHTANOV† , S. M. MEESUM‡, SAKET SAURABH§ ,

AND MEIRAV ZEHAVI†

Abstract. For a target rank r, the rigidity of a matrix A over a field F is the minimum Hamming
distance between A and a matrix of rank at most r. Rigidity is a classical concept in computational
complexity theory: constructions of rigid matrices are known to imply lower bounds of significant
importance relating to arithmetic circuits. Yet, from the viewpoint of parameterized complexity, the
study of central properties of matrices in general, and of the rigidity of a matrix in particular, has been
neglected. In this paper, we conduct a comprehensive study of different aspects of the computation
of the rigidity of general matrices in the framework of parameterized complexity. Naturally, given
parameters r and k, the Matrix Rigidity problem asks whether the rigidity of A for the target rank
r is at most k. We show that in the case F = R or F is any finite field, this problem is fixed-parameter
tractable with respect to k+ r. To this end, we present a dimension reduction procedure, which may
be a valuable primitive in future studies of problems of this nature. We also employ central tools
in real algebraic geometry, which are not well known in parameterized complexity, as a black box.
In particular, we view the output of our dimension reduction procedure as an algebraic variety. Our
main results are complemented by a W[1]-hardness result and a subexponential-time parameterized
algorithm for a special case of Matrix Rigidity, highlighting the different flavors of this problem.

Key words. matrix rigidity, parameterized complexity, linear algebra
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DOI. 10.1137/17M112258X

1. Introduction. The rigidity of a matrix is a classical concept in computa-
tional complexity theory, which was introduced by Grigoriev [7, 8] in 1976 and by
Valiant [23] in 1977. Constructions of rigid matrices are known, for instance, to imply
lower bounds of significant importance relating to arithmetic circuits. Yet, from the
viewpoint of parameterized complexity, the study of central properties of matrices in
general, and of the rigidity of a matrix in particular, has been neglected. The few
papers that do consider such properties are restricted to the very special case of adja-
cency matrices, and therefore they are primarily studies in graph theory rather than
matrix theory [16, 17]. In this paper, we conduct a comprehensive study of different
aspects of the computation of the rigidity of general matrices in the framework of
parameterized complexity.

Formally, given a matrix A over a field F, the rigidity of A, denoted by RF
A(r), is

defined as the minimum Hamming distance between A and a matrix of rank at most
r. In other words, RF

A(r) is the minimum number of entries in A that need to be
edited in order to obtain a matrix of rank at most r. Naturally, given parameters r
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Preprocessing 



Robust PCA  

Input: nxd matrix M, integers r, k 
Task: Change at most k entries of M such that the  
resulting matrix is of rank at most r

Main idea: polytime procedure reducing (M,r,k) to 
equivalent instance (M’,r,k), where matrix M’ is O(rk)xO(rk) 
matrix 



Step I. Preprocessing 

If M has r+1 independent columns, at least one entry of 
these columns should be changed 

Parameterized
Complexity of

Matrix
Rigidity

Fomin,
Lokshtanov,
Meesum,
Saurabh,
Zehavi

Outline

History

Framework

Results
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Step I. Preprocessing 

If M has r+1 independent columns, at least one entry of 
these columns should be changed Parameterized

Complexity of
Matrix
Rigidity
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Repeat at most k + 1 times.
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Step I. Preprocessing 

If M has r+1 independent columns, at least one entry of 
these columns should be changed 

If we obtained k+1 sets of r+1 independent columns, 
then the answer is NO 
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If there are no r+1 independent columns, select a basis.  

Step I. Preprocessing 
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Reducing number of Columns

Algorithm. Useless-Columns
Input : A, r, k.

1 Let U  A.
2 Repeat at most k + 1 times or till U is empty:

If rank(U) � r + 1

then delete r + 1 linearly independent columns from U .
If rank(U)  r

then delete a column basis from U .

3 Output U .

Preprocessing algorithm



Step I. Preprocessing 

• The resulting matrix U has at most (k+1)x(r+1) columns.  

• U is a yes-instance if and only if M is. 

• Proof: pigeonhole principle



Step I. Preprocessing 

• Run the same preprocessing on rows, results in matrix 

with at most (k+1)x(r+1) columns and (k+1)x(r+1) rows.  

• Is it a polynomial kernel? 

• How to solve the problem?



Step II. Algorithm 

Matrix M-S is of rank at most r if and only if its each 
(r+1)x(r+1) submatrix  has zero determinant. (In total rkO(r) 
submatrices.)

Guess the span of matrix S from M=L+S (this is O(rk)xO(rk)  
matrix with at most k non-zero elements). Total rkO(r)  

guesses. Each non-zero entry of S is a variable. 

Polynomial equation with at most k variables and of 
degree at most k



Given a set P of ` polynomials of degree d in k variables with integer coe�cients

of bit length L, we can decide the feasibility of P with L logL log logL(` · d)O(k)

bit operations.

Fact



Theorem. Robust PCA is solvable in time  
poly(M) krO(kr)

We have to assume that matrix M is integer (or rational)



Exercise. Show that the following variant of Robust PCA is 
FPT parameterized by k and r.

Input: M, r, k 
Task: Change at most k rows of M such that the  
resulting matrix is of rank at most r



PCA with outliers

Refined Complexity of PCA with Outliers

Fedor Fomin * 1 Petr Golovach * 1 Fahad Panolan * 1 Kirill Simonov * 1

Abstract

Principal component analysis (PCA) is one of the
most fundamental procedures in exploratory data
analysis and is the basic step in applications rang-
ing from quantitative finance and bioinformatics
to image analysis and neuroscience. However, it
is well-documented that the applicability of PCA
in many real scenarios could be constrained by
an “immune deficiency” to outliers such as cor-
rupted observations. We consider the following
algorithmic question about the PCA with outliers.
For a set of n points in Rd, how to learn a subset
of points, say 1% of the total number of points,
such that the remaining part of the points is best
fit into some unknown r-dimensional subspace?
We provide a rigorous algorithmic analysis of the
problem. We show that the problem is solvable in
time nO(d2

). In particular, for constant dimension
the problem is solvable in polynomial time. We
complement the algorithmic result by the lower
bound, showing that unless Exponential Time Hy-
pothesis fails, in time f(d)n

o(d), for any function
f of d, it is impossible not only to solve the prob-
lem exactly but even to approximate it within a
constant factor.

1. Introduction

Problem statement and motivation. Classical principal
component analysis (PCA) is one of the most popular and
successful techniques used for dimension reduction in data
analysis and machine learning (Pearson, 1901; Hotelling,
1933; Eckart & Young, 1936). In PCA one seeks the best

*Equal contribution 1Department of Informatics, Univer-
sity of Bergen, Norway. Correspondence to: Fedor Fomin
<fomin@ii.uib.no>, Petr Golovach <pgo041@uib.no>, Fa-
had Panolan <Fahad.Panolan@uib.no>, Kirill Simonov <Kir-
ill.Simonov@uib.no>.

Proceedings of the 36 th International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

low-rank approximation of data matrix M by solving

minimize kM � Lk2F
subject to rank(L)  r.

Here ||A||2F =

P
i,j a

2

ij is the square of the Frobenius
norm of matrix A. By the Eckart-Young theorem (Eckart
& Young, 1936), PCA is efficiently solvable via Singular
Value Decomposition (SVD). PCA is used as a preprocess-
ing step in a great variety of modern applications including
face recognition, data classification, and analysis of social
networks.

In this paper we consider a variant of PCA with outliers,
where we wish to recover a low-rank matrix from large but
sparse errors. Suppose that we have n points (observations)
in d-dimensional space. We know that a part of the points are
arbitrarily located (say, produced by corrupted observations)
while the remaining points are close to an r-dimensional true
subspace. We do not have any information about the true
subspace and about the corrupted observations. Our task is
to learn the true subspace and to identify the outliers. As a
common practice, we collect the points into n ⇥ d matrix
M , thus each of the rows of M is a point and the columns
of M are the coordinates. However, it is very likely that
PCA of M will not reveal any reasonable information about
non-corrupted observations—well-documented drawback
of PCA is its vulnerability to even very small number of
outliers, an example is shown in Figure 1.

Matrix formulation suggests the following interpretation:
we seek a low-rank matrix L that, with an exception in few
rows, approximates M best.

ICML’19 2019



PCA with outliers
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Abstract
Principal component analysis (PCA) is one of the
most fundamental procedures in exploratory data
analysis and is the basic step in applications rang-
ing from quantitative finance and bioinformatics
to image analysis and neuroscience. However, it
is well-documented that the applicability of PCA
in many real scenarios could be constrained by
an “immune deficiency” to outliers such as cor-
rupted observations. We consider the following
algorithmic question about the PCA with outliers.
For a set of n points in Rd, how to learn a subset
of points, say 1% of the total number of points,
such that the remaining part of the points is best
fit into some unknown r-dimensional subspace?
We provide a rigorous algorithmic analysis of the
problem. We show that the problem is solvable in
time nO(d2

). In particular, for constant dimension
the problem is solvable in polynomial time. We
complement the algorithmic result by the lower
bound, showing that unless Exponential Time Hy-
pothesis fails, in time f(d)n

o(d), for any function
f of d, it is impossible not only to solve the prob-
lem exactly but even to approximate it within a
constant factor.

1. Introduction

Problem statement and motivation. Classical principal
component analysis (PCA) is one of the most popular and
successful techniques used for dimension reduction in data
analysis and machine learning (Pearson, 1901; Hotelling,
1933; Eckart & Young, 1936). In PCA one seeks the best
low-rank approximation of data matrix M by solving

minimize kM � Lk2F
subject to rank(L)  r.
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Here ||A||2F =

P
i,j a

2

ij is the square of the Frobenius
norm of matrix A. By the Eckart-Young theorem (Eckart
& Young, 1936), PCA is efficiently solvable via Singular
Value Decomposition (SVD). PCA is used as a preprocess-
ing step in a great variety of modern applications including
face recognition, data classification, and analysis of social
networks.

In this paper we consider a variant of PCA with outliers,
where we wish to recover a low-rank matrix from large but
sparse errors. Suppose that we have n points (observations)
in d-dimensional space. We know that a part of the points are
arbitrarily located (say, produced by corrupted observations)
while the remaining points are close to an r-dimensional true
subspace. We do not have any information about the true
subspace and about the corrupted observations. Our task is
to learn the true subspace and to identify the outliers. As a
common practice, we collect the points into n ⇥ d matrix
M , thus each of the rows of M is a point and the columns
of M are the coordinates. However, it is very likely that
PCA of M will not reveal any reasonable information about
non-corrupted observations—well-documented drawback
of PCA is its vulnerability to even very small number of
outliers, an example is shown in Figure 1.

Figure 1. An illustration on how outliers impact PCA. The optimal
approximation line (in dashed) of the given set of points without the
evident outlier shows the linear structure of the dataset. However,
when the outlier is present, the principal component (in solid)
changes drastically.How to identify k points such that n-k remaining points 

fit well to an r-dimensional subspace?  



Figure 1: An illustration on how outliers impact PCA. The optimal approximation line (in
dashed) of the given set of points without the evident outlier shows the linear structure of
the dataset. However, when the outlier is present, the principal component (in solid) changes
drastically.

Matrix formulation suggests the following interpretation: we seek a low-rank matrix L that,
with an exception in few rows, approximates M best.

Input: Data matrix M 2 Rn⇥d, integer parameters r and k.
Task:

minimize kM � L� Sk2F
subject to L, S 2 Rn⇥d

,

rank(L)  r, and

S has at most k non-zero rows.

PCA with Outliers

The geometric interpretation of PCA with Outliers is very natural: Given n points in Rd,
we seek for a set of k points whose removal leaves the remaining n�k points as close as possible
to some r-dimensional subspace.

Related work. PCA with Outliers belongs to the large class of extensively studied robust
PCA problems, see e.g. [21, 24, 3]. In the robust PCA setting we observe a noisy version M

of data matrix L whose principal components we have to discover. In the case when M is a
“slightly” disturbed version of L, PCA performed on M provides a reasonable approximation
for L. However, when M is very “noisy” version of L, like being corrupted by a few outliers,
even one corrupted outlier can arbitrarily alter the quality of the approximation.

One of the approaches to robust PCA, which is relevant to our work, is to model outliers as
additive sparse matrix. Thus we have a data d ⇥ n matrix M , which is the superposition of a
low-rank component L and a sparse component S. That is, M = L+ S. This approach became
popular after the works of Candès et al. [4], Wright et al. [23], and Chandrasekaran et al. [6].
A significant body of work on the robust PCA problem has been centered around proving that,

2

Mathematical model
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Abstract
Principal component analysis (PCA) is one of the
most fundamental procedures in exploratory data
analysis and is the basic step in applications rang-
ing from quantitative finance and bioinformatics
to image analysis and neuroscience. However, it
is well-documented that the applicability of PCA
in many real scenarios could be constrained by
an “immune deficiency” to outliers such as cor-
rupted observations. We consider the following
algorithmic question about the PCA with outliers.
For a set of n points in Rd, how to learn a subset
of points, say 1% of the total number of points,
such that the remaining part of the points is best
fit into some unknown r-dimensional subspace?
We provide a rigorous algorithmic analysis of the
problem. We show that the problem is solvable in
time nO(d2

). In particular, for constant dimension
the problem is solvable in polynomial time. We
complement the algorithmic result by the lower
bound, showing that unless Exponential Time Hy-
pothesis fails, in time f(d)n

o(d), for any function
f of d, it is impossible not only to solve the prob-
lem exactly but even to approximate it within a
constant factor.

1. Introduction

Problem statement and motivation. Classical principal
component analysis (PCA) is one of the most popular and
successful techniques used for dimension reduction in data
analysis and machine learning (Pearson, 1901; Hotelling,
1933; Eckart & Young, 1936). In PCA one seeks the best
low-rank approximation of data matrix M by solving

minimize kM � Lk2F
subject to rank(L)  r.

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

Here ||A||2F =

P
i,j a

2

ij is the square of the Frobenius
norm of matrix A. By the Eckart-Young theorem (Eckart
& Young, 1936), PCA is efficiently solvable via Singular
Value Decomposition (SVD). PCA is used as a preprocess-
ing step in a great variety of modern applications including
face recognition, data classification, and analysis of social
networks.

In this paper we consider a variant of PCA with outliers,
where we wish to recover a low-rank matrix from large but
sparse errors. Suppose that we have n points (observations)
in d-dimensional space. We know that a part of the points are
arbitrarily located (say, produced by corrupted observations)
while the remaining points are close to an r-dimensional true
subspace. We do not have any information about the true
subspace and about the corrupted observations. Our task is
to learn the true subspace and to identify the outliers. As a
common practice, we collect the points into n ⇥ d matrix
M , thus each of the rows of M is a point and the columns
of M are the coordinates. However, it is very likely that
PCA of M will not reveal any reasonable information about
non-corrupted observations—well-documented drawback
of PCA is its vulnerability to even very small number of
outliers, an example is shown in Figure 1.

Figure 1. An illustration on how outliers impact PCA. The optimal
approximation line (in dashed) of the given set of points without the
evident outlier shows the linear structure of the dataset. However,
when the outlier is present, the principal component (in solid)
changes drastically.

How to identify k points 
such that n-k remaining 
points fit well to an r-
dimensional subspace?  



Related work

Robust PCA 

M = L+ S

low rank

sparse component

data matrix

[Candès, Li, and Wright, 2011] 

[Chandrasekaran et al.,  2011]

Noisy Robust PCA 

M = L+ S +N

[Wright et al., 2009] 

data matrix

low rank

sparse component

noise



Theorem Robust PCA can be solved by 
solving        instances of PCA

Figure 1: An illustration on how outliers impact PCA. The optimal approximation line (in
dashed) of the given set of points without the evident outlier shows the linear structure of
the dataset. However, when the outlier is present, the principal component (in solid) changes
drastically.

Matrix formulation suggests the following interpretation: we seek a low-rank matrix L that,
with an exception in few rows, approximates M best.

Input: Data matrix M 2 Rn⇥d, integer parameters r and k.
Task:

minimize kM � L� Sk2F
subject to L, S 2 Rn⇥d

,

rank(L)  r, and

S has at most k non-zero rows.

PCA with Outliers

The geometric interpretation of PCA with Outliers is very natural: Given n points in Rd,
we seek for a set of k points whose removal leaves the remaining n�k points as close as possible
to some r-dimensional subspace.

Related work. PCA with Outliers belongs to the large class of extensively studied robust
PCA problems, see e.g. [21, 24, 3]. In the robust PCA setting we observe a noisy version M

of data matrix L whose principal components we have to discover. In the case when M is a
“slightly” disturbed version of L, PCA performed on M provides a reasonable approximation
for L. However, when M is very “noisy” version of L, like being corrupted by a few outliers,
even one corrupted outlier can arbitrarily alter the quality of the approximation.

One of the approaches to robust PCA, which is relevant to our work, is to model outliers as
additive sparse matrix. Thus we have a data d ⇥ n matrix M , which is the superposition of a
low-rank component L and a sparse component S. That is, M = L+ S. This approach became
popular after the works of Candès et al. [4], Wright et al. [23], and Chandrasekaran et al. [6].
A significant body of work on the robust PCA problem has been centered around proving that,

2

nO(d2)
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=
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F
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||2
F

=

||V m
T
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remove m1

remove m1

remove m2

remove m2

Figure 2: An example with d = 2, n = 2, r = 1, k = 1. Two rows of the input matrix M are
represented as two points m

1

and m

2

on the plane. The same plane represents the choice of
1-dimensional approximation subspace through the selection of a vector V orthogonal to it. The
algebraic set W is the unit circle since length of V must be 1. The diagonal lines mark the values
of V for which m

1

and m

2

are equidistant. They split W into four one-dimensional and four
zero-dimensional cells. For each of the one-dimensional cells it is shown in the corresponding
sector which of the points is the outlier and hence is removed.

Since degrees ofQ and polynomials from P are at most 4, |P| = �n
2

�
, and the real dimension of

W is at most (d�r)d, which is the dimension of R(d�r)⇥d � W , the algorithm from Proposition 1
does at most

t =

✓
n

2

◆
(d�r)d

2O(d)

operations and produces at most t points VC , and our algorithm produces one instance of PCA
for each computed point.2

We are also able to obtain a reduction to

✓
n

2

◆rd

2O(d)

instances of PCA by proceeding in the same manner for slightly di↵erent characterization of
r-dimensional subspaces. Intuitively, now points on the algebraic set define the orthonormal
basis of the subspace itself, and not of its orthogonal complement as in the previous part.

Now the matrix space is Rr⇥d, the conditions that an element V 2 Rr⇥d defines an orthonor-
mal basis of size r are analogous:

Q̄

O
i,j(V ) :=

dX

l=1

vilvjl = 0, for 1  i < j  r,

Q̄

N
i (V ) :=

 
dX

l=1

v

2

il

!
� 1 = 0, for 1  i  r.

2As W is restricted by Q(V ) = 0, its dimension is actually smaller. It could be bounded more precisely as
(d� r)(d+ r � 1)/2, but we omit the calculation in order not to unnecessarily complicate the text.
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Sketch of the proof

d=2, k=1, r=1

Intuition: 



Sketch of the proof

Pi,j(V ) = ||V mT
i ||2F � ||V mT

j ||2F

polynomials

unit vector defining r-dimensional subspace 

algebraic set W

Cell CcW s.t.  for all V in C the signs of all 
polynomials do not change

For each cell C  take some V from C, construct orthogonal 
subspace,  remove the furthermost k points, run PCA on 

remaining n-k points



Sketch of the proof

The number of times we call PCA is proportional  to the 
number of cells

nO(d2)The number of cells is        and 
the cells can be constructed 
within the same running time



Natural questions

nO(d2)Is the running time          the best we can hope for? 

Could PCA with outliers be solved in polynomial 
time? 

Could PCA with outliers be solved in time f(d)nO(1)? 



Exponential Time Hypothesis (ETH)

(ETH) 3-SAT with n variables and m clauses 

cannot be solved in time 2o(n+m)

[Impagliazzo,  Paturi, and  Zane, 2001]



Theorem. For any c>1, there is no c-approximation 
algorithm for PCA With Outliers with running time  
f(d) No(d)  for any computable function  f  unless 
ETH fails, where  N  is the bitsize of the input 
matrix  M.

Proof: Reduction from Multicolored Clique



PCA with outliers

is solvable in time  
|M |O(d2)

cannot be solved in time  

f(d)|M |o(d)

unless ETH fails  



Conclusion

Robust PCA FPT parametrized by d 
and k 

PCA with outliers: nf(d) algorithm



Open questions

Robust PCA in time nf(d) 

PCA with outliers f(r)-approximation 
in poly time 




