Coresets for Clustering Problems

Anup Bhattacharya Indian Statistical Institute, Kolkata

Coresets for Clustering Problems

Basics of Coresets

- Small, weighted summary of the input.
- Given an unweighted (possibly weighted) dataset and some computational problem on this dataset, compute a small summary such that the summary approximates the dataset well for that task.

k-means Clustering Problem

- Input: Dataset $X \subseteq \mathbb{R}^d$, and integer k.
- Cost function: For $C \subseteq \mathbb{R}^d$, |C| = k, $\Phi(X, C) = \sum_{x \in X} \min_{c \in C} ||x - c||^2$.

• Objective: Find set $C \subseteq \mathbb{R}^d$ of k centers that minimizes $\Phi(X, C)$.

• Coresets to *approximate the dataset well* for *k*-means.

- 4 週 ト - 4 三 ト - 4 三 ト

- Coresets to *approximate the dataset well* for *k*-means.
- How to guarantee coresets approximate dataset well.
- Coresets approximate dataset with respect to *k*-means objective function.

- Approximates the objective function for input dataset simultaneously for all queries.
- Query for *k*-means: Cost of *k*-means objective function with respect to set of *k* centers.

Coresets for Clustering Problems

Basics of Coreset

- Let X be a dataset with non-negative weights $\mu_X(x)$.
- Let \mathcal{Q} be set of possible queries or solutions.
- Weighted set S is an ε -coreset of X if for all $Q \in Q$,

$$(1 - \varepsilon) \mathsf{cost}(X, Q) \le \mathsf{cost}(S, Q) \le (1 + \varepsilon) \mathsf{cost}(X, Q)$$

イロト 不得下 イヨト イヨト

(k, ε) -Coreset for k-means

[HPM2004] Given a point set X ⊆ ℝ^d, a weighted subset S ⊆ X is a (k, ε)-coreset of X for k-means if for all C ⊆ ℝ^d such that |C| = k,

$$(1 - \varepsilon) \mathrm{cost}(X, C) \leq \mathrm{cost}(S, C, w) \leq (1 + \varepsilon) \mathrm{cost}(X, C)$$

$$\operatorname{cost}(X,C) = \sum_{x \in X} d(x,C)^2$$
, $\operatorname{cost}(S,C,w) = \sum_{x \in S} w(x) d(x,C)^2$.

Basics of Coresets

- Strong coreset: If above inequality is true for all queries $Q \in Q$.
- Weak coreset: If above inequality is true for optimal solution $Q^* \in \mathcal{Q}$.

イロト 不得下 イヨト イヨト

Basics of Coresets

Obtain Approximate Solutions using Coresets

- Construct coreset and solve problem on the coreset.
- Exact or approximate solution on the coreset gives approximate solution for dataset.
- We show: $cost(X, Q_S^*) \le (1 + 2\varepsilon)cost(X, Q_X^*)$.
- $\operatorname{cost}(X, Q_S^*) \leq \frac{1}{1-\varepsilon} \operatorname{cost}(S, Q_S^*) \leq \frac{1}{1-\varepsilon} \operatorname{cost}(S, Q_X^*) \leq \frac{1+\varepsilon}{1-\varepsilon} \operatorname{cost}(X, Q_X^*) \leq (1+2\varepsilon) \operatorname{cost}(X, Q_X^*).$

イロト イポト イヨト イヨト

Applications of Coresets

イロン イヨン イヨン イヨン

Properties of Coresets

Union of Coresets is a Coreset

Let S₁, S₂ be (k, ε)-coresets for disjoint sets X₁ and X₂, then S₁ ∪ S₂ is a (k, ε)-coreset for X₁ ∪ X₂.

Composable Coresets

• If S_1 is a (k, ε) -coreset for S_2 , and S_2 is a (k, δ) -coreset for S_3 , then S_1 is $(k, \varepsilon + \delta + \varepsilon \delta)$ -coreset for S_3 .

•
$$\forall C$$
, $(1-\varepsilon) \operatorname{cost}(S_2, C, w_2) \leq \operatorname{cost}(S_1, C, w_1) \leq (1+\varepsilon) \operatorname{cost}(S_2, C, w_2)$.

• $\forall C$, $(1-\delta)$ cost $(S_3, C, w_3) \leq$ cost $(S_2, C, w_2) \leq (1+\delta)$ cost (S_3, C, w_3) .

Informally

If S₁ is coreset of S₂ with (1 + ε)-guarantee, and S₂ is coreset of S₃ with (1 + δ)-guarantee, then S₁ gives (1 + ε)(1 + δ)-guarantee for S₃.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Merge and Reduce

• Design streaming algorithm on insertion only data streams [BS1980, HPM2004].

- 4 週 ト - 4 三 ト - 4 三 ト

Merge and Reduce

Storage

• log *n* levels in the tree, each level has at most one coreset: $|S| \log n$.

Error of Approximation

- We compute coresets of coresets, the error of approximation goes up.
- Composing (k, ε) and (k, δ) -coresets gives guarantee $(1 + \varepsilon)(1 + \delta)$.
- Guarantee using log *n* levels becomes $(1 + \varepsilon)^{\log n}$.

• We set
$$\varepsilon' = \frac{\varepsilon}{\log n}$$
.

Distributed Algorithms using Coresets

- Data partitioned across machines, they compute coreset on local data.
- Machines send coresets to the central server.
- Server computes union of coresets, coresets of coresets.
- Complexity: Communication from machine to server: Coreset size.

- 4 回 ト 4 ヨ ト - 4 ヨ ト -

Techniques for Coreset Constructions

Coresets for Clustering Problems

イロト イポト イヨト イヨト

э

Coresets using Uniform Sampling

- Idea: Subset of points sampled uniformly gives a coreset.
- Question: How many samples do we need? Size of coreset using uniform sampling?
- $\Omega(n)$ uniform samples.

k = 1

イロト 不得下 イヨト イヨト

Har-Peled and Majumder (HPM2004)

- Coresets for k-means and k-median in low dimensions.
- Computes coresets of size $O(k\varepsilon^{-d} \log n)$.
- Let C be constant factor approximation for k-means or k-median.
- Build exponential grid of $O(\log n)$ levels around each center.
- Snap input points to the closest point in the grid.
- Price of snapping smaller than ε OPT.
- The weighted set S is a coreset.

Har-Peled and Kushal (2005)

- Computes coreset of size independent of *n* of size $O(\frac{k^2}{\varepsilon^d})$ for *k*-median and $O(\frac{k^3}{\varepsilon^{d+1}})$ for *k*-means.
- Let C be a constant factor approximation.
- Draw $O(\frac{1}{e^{d-1}})$ lines from each center.
- Project each input point to the closest line.
- Coreset size of $O(\frac{k}{\varepsilon})$ and $O(\frac{k^2}{\varepsilon^2})$ for points on 1-D for k-median and k-means respectively.

Chen's Construction (2009)

- Coreset size for k-median and k-means $O(dk^2 \log n\varepsilon^{-2})$.
- Key idea: Partition dataset into disjoint subsets and take random samples from each subset.
- Start with an (α, β) -bicriteria approximation for k-means.
- Partition space using concentric rings around these centers.
- Take random samples from each ring.
- Coreset size for k-median and k-means $O(dk^2 \log n\varepsilon^{-2})$.

Feldman-Langberg (2011)

- Coreset size for k-means $\tilde{O}(k^3\varepsilon^{-4})$.
- Samples points based on how important the points are with respect to the objective function.
- First computes sensitivity of points, and then samples points with probability proportional to sensivity.

Coreset Constructions

Coresets for k-means

Coreset Size
$O(k\varepsilon^{-d}\log n)$
$O(k^3 \varepsilon^{-(d+1)})$
$ ilde{O}(dk^2 \varepsilon^{-2} \log n)$
$ ilde{O}(dkarepsilon^{-4})$
$\tilde{O}(k^3 \varepsilon^{-4})$

Coreset Constructions using Dimensionality Reduction

イロト イポト イヨト イヨト

Coresets for k-means/k-median

Can you design coresets whose size is indepedent of d and n?
Coreset size is polynomial in k and ¹/_c.

Coresets for *k*-means (FSS2013)

- Assume that the data is very high dimensional.
- They give a dimensionality reduction scheme to show that most of data lies in a much smaller dimensional subspace.
- Apply known coreset constructions on data in smaller dimensional subspace.

Coresets for *k*-means (FSS2013)

- Key idea: Cost of clustering of high dimensional points has a pseudo-random part and a structured part.
- Pseudo-random part of cost is same for all queries (with k centers).
- Structured part of the cost comes from clustering projected points.

・ 何 ト ・ ヨ ト ・ ヨ ト

- Identity for k-means: $cost(X, p) = cost(X, \mu(X)) + |X|||p \mu(X)||^2$.
- Coreset centroid $\mu(X)$ with weight |X| and constant $cost(X, \mu(X))$.

Coresets for *k*-means (FSS 2013)

Coreset Definition

• Let A be a set of n points in \mathbb{R}^d . A weighted set $S \in \mathbb{R}^{m \times d}$ and a constant $\Delta > 0$ is an ε -coreset for k-means if for all C

$$(1 - \varepsilon) cost(A, C) \leq cost(S, C) + \Delta \leq (1 + \varepsilon) cost(A, C)$$

Coreset Construction for k-means (FSS2013)

Dimensionality Reduction Algorithm

- Let OPT is known for k-means.
- Compute *k*-dim subspace *S* that minimizes the sum of squared distances from points to the subspace.
- While there exists k dimensions such that adding those to S reduces the subspace approximation cost by at least ε^2 OPT, add them to subspace S.
- Dimension of S is at most $\frac{k}{r^2}$.
- Coreset for *k*-means: Projected points on *S* (Structured part) and cost of projection onto *S* (Pseudo-random part).

イロト 不得下 イヨト イヨト

Analysis

- Let T be the subspace containing S and C (query with k centers).
- $\operatorname{cost}(X, C) = \operatorname{cost}(X, T) + \operatorname{cost}(X_T, C) \approx \operatorname{cost}(X, S) + \operatorname{cost}(X_S, C).$
- We have $cost(X, S) cost(X, T) \le \varepsilon^2 OPT$.
- On avarage projected points on *T* and *S* are close. Because, cost(X_T, X_S) = cost(X, S) − cost(X, T) ≤ ε²OPT.
- Show that $|\operatorname{cost}(X_{\mathcal{S}}, C) \operatorname{cost}(X_{\mathcal{T}}, C)| \leq \varepsilon \mathsf{OPT}.$

イロト 不得下 イヨト イヨト

FSS13

• Let A be a set of n points in \mathbb{R}^d , equivalently, $A \in \mathbb{R}^{n \times d}$. Let A_m be its rank *m*-approximation for $m = O(\frac{k}{\varepsilon^2})$. Then, there exists a constant $\Delta = ||A - A_m||_F^2$ such that for all sets of k centers C,

$$(1-arepsilon) \mathsf{cost}(\mathsf{A},\mathsf{C}) \leq \mathsf{cost}(\mathsf{A}_m,\mathsf{C}) + \Delta \leq (1+arepsilon) \mathsf{cost}(\mathsf{A},\mathsf{C})$$

Coreset

- We have *n* points on $O(\frac{k}{\varepsilon^2})$ -dimensional subspace *S*, and a constant equals the projection cost on subspace *S*.
- We apply Feldman-Langberg coreset construction on S to obtain a coreset of size $\tilde{O}(\frac{k^2}{\varepsilon^6})$.

Coresets for k-median Problem

Euclidean k-median Problem

Given a set X of n points in ℝ^d, and an integer k, the objective is to find a set C ⊆ ℝ^d of k centers such that the objective function

$$\sum_{x\in X}\min_{c\in C}||x-c||_2$$

is minimized.

• *k*-median is NP-hard, and constant factor approximation algorithms are known for *k*-median.

- Many results on designing strong coresets for k-median.
- Feldman-Langberg framework for k-median has coreset of size $\frac{kd}{\epsilon^2}$.

Focus for this talk

Woodruff-Sohler designs a coreset for k-median of size poly(k, ¹/_ε), independent of d.

- 4 週 ト - 4 三 ト - 4 三 ト

Coreset for *k*-median (Woodruff-Sohler'18)

- Can we get a coreset for k-median similar to k-means?
- Let X_S be the set of projected points on subspace S and a constant Δ. Do we have for all queries C,

$$(1 - \varepsilon) \mathsf{cost}(X, C) \le \mathsf{cost}(X_S, C) + \Delta \le (1 + \varepsilon) \mathsf{cost}(X, C)$$

• Gave a counterexample to any such guarantee for k-median.

イロト イポト イヨト イヨト

Coreset for *k*-median (Woodruff-Sohler'18)

Counterexample for k = 1

- Let there be *n* points on a unit ball in \mathbb{R}^d for very high *d*.
- We project these points on a $I = poly(k, \frac{1}{\varepsilon})$ -dimensional subspace.
- With high probability, norms of the projected points are very small.
- For query with center at origin, we require $\Delta = n$.
- For query with center at {1,0, · · · ,0}, we get cost of original points as √2n and total cost of coreset and constant is 2n.

イロト 不得下 イヨト イヨト

Coreset for *k*-median (Woodruff-Sohler'18)

 Unlike for k-means, we cannot apply Pythagorean theorem here to split the cost among the cost of projection and cost of clustering of projected points.

イロト イポト イヨト イヨト
Coreset for *k*-median (Woodruff-Sohler'18)

- Show that a variant of dimensionality reduction scheme works for *k*-median.
- Dimensionality reduction gives a set *n* points in \mathbb{R}^{d+1} such that most of the points live in a much smaller dimensional subspace.

Coreset for *k*-median (Woodruff-Sohler'18)

• Key idea: Add a special dimension to any point with value equal to the distance to subspace *S*.

Dimensionality Reduction

Dimensionality Reduction Algorithm

- Let Opt be the cost of the optimal k-median clustering.
- Compute optimal *k*-dimensional subspace S for minimizing sum of distances from points to subspace S.
- While we can add k dimensions to S to reduce the cost of the subspace approximation problem by $\varepsilon^2 OPT$, do that.
- Let S be the best such subspace.
- For each point *p* in *X*,
 - **(**) Compute distance $d(p, p_S)$ where p_S is the projection on subspace S.

イロト 不得下 イヨト イヨト

2 Return $(p_S, d(p, p_S)) \in \mathbb{R}^{d+1}$

Analysis

- Let T denote the subspace containing both S and C.
- For any center $c_p \in C$, we have $d(p, c_p) = (d(p, p_T)^2 + d(p_T, c_p)^2)^{1/2}$.
- Cost with respect to the coreset is $d((p_5, d(p, p_5), (c_p, 0)) = (d(p_5, c_p)^2 + d(p, p_5)^2)^{1/2}.$
- (Distance to Subspace Lemma) $cost(X, S) - cost(X, T) = \sum_{p} (d(p, p_{S}) - d(p, p_{T})) \le \varepsilon^{2} OPT.$
- (Distance inside Subspace Lemma) $\sum_{p \in X} |d(p_T, c_p) - d(p_S, c_p)| \le \varepsilon \text{OPT}.$

イロト 不得下 イヨト イヨト 二日

Distance inside Subspace Lemma

• To show:
$$\sum_{p \in P} |d(p_T, c_p) - d(p_S, c_p)| \le \varepsilon \text{OPT}.$$

- Using triangle inequality, this is at most $cost(X_S, X_T)$.
- For all $p \in Q$ such that $d(p_T, p_S) \le \varepsilon d(p, p_S)$, we have $\sum_{p \in Q} d(p_T, p_S) \le \varepsilon OPT$.
- Else, $d(p_T, p_S) = (d(p, p_S)^2 d(p, p_T)^2)^{1/2}$.
- Since d(p_T, p_S) > εd(p, p_S), using triangle inequality, we have above expression is at most ^{d(p,p_S)-d(p,p_T)}/_ε.
- Since $\sum_{p} d(p, p_{S}) d(p, p_{T}) \leq \varepsilon^{2} \text{OPT}$, we are done.

イロト 不得下 イヨト イヨト 二日

Analysis contd.

•
$$|\operatorname{cost}(S,C) - \operatorname{cost}(X,C)| \le \varepsilon \operatorname{cost}(X,C).$$

• We show: $\sum_p |d(p,c_p) - d((p_S,d(p,p_S),(c_p,0))| \le 2\varepsilon \text{OPT}.$

$$\begin{aligned} |d(p, c_p) - d((p_S, d(p, p_S), (c_p, 0))| \\ &= |(d(p, p_T)^2 + d(p_T, c_p)^2)^{1/2} - (d(p, p_S)^2 + d(p_S, c_p)^2)^{1/2}| \\ &= |d(p, p_T), d(p_T, c_p)|_2 - |d(p, p_S), d(p_S, c_p)|_2 \\ &\leq |d(p, p_T) - d(p, p_S), d(p_T, c_p) - d(p_S, c_p)|_2 \\ &\leq |d(p, p_T) - d(p, p_S), d(p_T, c_p) - d(p_S, c_p)|_1 \\ &= |d(p, p_T) - d(p, p_S)| + |d(p_T, c_p) - d(p_S, c_p)| \\ &\leq 2\varepsilon \mathsf{OPT} \end{aligned}$$

using Distance to Subspace Lemma and Distance inside Subspace Lemma

Thanks & Questions

Coresets for Clustering Problems

イロト イポト イヨト イヨト

3

Sampling-based Algorithms for Clustering Problems

Anup Bhattacharya Indian Statistical Institute, Kolkata

Sampling-based Algorithms for Clustering Problems

K 4 E K 4 E K

Sampling-based Algorithms for Clustering Problems

э

k-means Clustering

k-means Clustering Problem

- Input: Dataset $X \subseteq \mathbb{R}^d$, and integer k.
- Cost function: For $C \subseteq \mathbb{R}^d$, |C| = k, $\Phi(X, C) = \sum_{x \in X} \min_{c \in C} ||x - c||^2$.

		0										
	0	0	0									
0	0	0	0	0								
	0	0	0									
		0										
				×	×	×						
				×	×	×						
				×	×	×						

・ 同 ト ・ 三 ト ・ 三 ト

Sampling-based Algorithms for Clustering Problems

- Input: Dataset $X \subseteq \mathbb{R}^d$, and integer k.
- Cost function: For $C \subseteq \mathbb{R}^d$, |C| = k, $\Phi(X, C) = \sum_{x \in X} \min_{c \in C} ||x - c||^2$.

• • = • • = •

Objective: Find set C ⊆ ℝ^d of k centers that minimizes Φ(X, C).

- Input: Dataset $X \subseteq \mathbb{R}^d$, and integer k.
- Cost function: For $C \subseteq \mathbb{R}^d$, |C| = k, $\Phi(X, C) = \sum_{x \in X} \min_{c \in C} ||x - c||^2$.
- Objective: Find set C ⊆ ℝ^d of k centers that minimizes Φ(X, C).

• • = • • = •

- Input: Dataset $X \subseteq \mathbb{R}^d$, and integer k.
- Cost function: For $C \subseteq \mathbb{R}^d$, |C| = k, $\Phi(X, C) = \sum_{x \in X} \min_{c \in C} ||x - c||^2$.
- Objective: Find set C ⊆ ℝ^d of k centers that minimizes Φ(X, C).
- Voronoi partitioning gives k clusters.

< 同 ト く ヨ ト く ヨ ト

Known Results: k-means Clustering

• α -approximation ALG: for any instance *I*, ALG(*I*) $\leq \alpha \cdot OPT(I)$.

Hardness Results

Approximation Algorithms

NP-hard for $k \ge 2$ [D2008]6.357 by Ahmadian *et al.* (2016)NP-hard for $d \ge 2$ [V2009,MNV2012] $(1 + \varepsilon)$ in $O(nd2^{\tilde{O}(\frac{k}{\varepsilon})})$ [JKS2014]APX-hard [Awasthi *et al.* (2015)]

Sampling-based Algorithms for Clustering Problems

Approximation Algorithm for k-means

Sampling-based Algorithms for Clustering Problems

イロト イポト イヨト イヨト

э

• Objective function: $\min_{c \in \mathbb{R}^d} \Phi(X, \{c\}) = \min_{c \in \mathbb{R}^d} \sum_{x \in X} ||x - c||^2$.

Exact Solution

• Centroid of points is the optimal center for 1-means.

Approximate Solution

• A uniformly sampled point gives 2-approximation in expectation.

• Fact:
$$\Phi(X, p) = \Phi(X, \mu(X)) + |X| \cdot ||p - \mu(X)||^2$$

 Centroid of O(¹/_ε) points sampled uniformly at random gives (1+ε)-approximation for 1-means with constant probability [IKI1994].

- 4 週 ト - 4 三 ト - 4 三 ト

• 2-means is NP-hard.

Approximate Solution

 Require a sample of size O(¹/_ε) chosen uniformly at random from each of the optimal clusters.

Approximate Solution

Require a sample of size O(¹/_ε) chosen uniformly at random from each of the optimal clusters.

Approximate Larger Optimal Cluster

- Uniformly sample ²/_ε points. Sample contains at least ¹/_ε points from the larger optimal cluster.
- Consider all subsets of size $\frac{1}{\varepsilon}$ of the sample. Running time $\left(\frac{\frac{2}{\varepsilon}}{1}\right)$.
- Centroid of these subsets are candidate centers for the optimal center of the larger cluster.

Approximate Smaller Optimal Cluster

• How do you approximate the center for the smaller optimal cluster?

Approximate Smaller Optimal Cluster

• How do you approximate the center for the smaller optimal cluster?

Prune and Sample

- For each of the candidate centers of the larger optimal cluster, consider the set Q of farthest ⁿ/_{2i-1} points from the candidate center for 1 ≤ i ≤ log n.
- Randomly sample O(¹/_{ε²}) points from Q. Consider all possible subsets of size O(¹/_ε) from the sample.
- Centroid of at least one subset gives $(1 + \varepsilon)$ -approximation for the smaller optimal cluster.
- Same idea works for any $k \ge 2$ [KSS2010].

- 4 同 6 4 日 6 4 日 6

Sampling based $(1 + \varepsilon)$ -approximations for k-means

Approximate Largest Optimal Cluster

- Step 1: Uniformly sample $O(\frac{k}{\epsilon})$ points.
- Whp, sample contains O(¹/_ε) points from largest optimal cluster.
- Step 2: Consider means of subsets of size O(¹/_ε) of sample.
- Approximates cluster in time $O(\frac{k}{\varepsilon})^{O(\frac{1}{\varepsilon})}$.

< 回 > < 三 > < 三 >

Sampling based $(1 + \varepsilon)$ -approximations for k-means

Approximate Smaller Optimal Clusters

- Number of points in some optimal clusters may be very small.
- Uniform sampling does not help to approximate smaller clusters.

< 回 > < 三 > < 三 >

D^2 -Sampling

D^2 -Sampling

- Let C be set of already chosen centers.
- D²-sampling chooses point p as next center wp prop. to min_{c∈C} ||p − c||².

- 4 同 6 4 日 6 4 日 6

D^2 -Sampling based Algorithms

- k centers using D^2 -sampling gives $O(\log k)$ -approximation [AV2007].
- O(k) such centers give constant pseudo-approximation [ADK2009].

D^2 -Sampling based Algorithms

- k centers using D^2 -sampling gives $O(\log k)$ -approximation [AV2007].
- O(k) such centers give constant pseudo-approximation [ADK2009].

k-means++

- A point is sampled from an *uncovered* optimal cluster, that cluster is well-approximated.
- Overall (log k)-approximation because may miss some clusters.
- Lower bound of $\Omega(\log k)$ for k-means++.

< 同 ト く ヨ ト く ヨ ト

Sampling based $(1 + \varepsilon)$ -approximations for k-means

D^2 -Sampling based Algorithm

- Iterative algorithm, *C_i* be chosen centers till *i*th iteration.
- Step 1: S is D^2 -sample with respect to C_i of $O(\frac{k}{\varepsilon^3})$ points.
- Step 2: Consider mean of subsets of size O(¹/_ε) of sample.

• $(1 + \varepsilon)$ -approx for k-means in time $O(nd \cdot 2^{\tilde{O}(\frac{k}{\varepsilon})})$ [JKS2014].

Constrained Clustering: Examples

- Given *n* points in \mathbb{R}^d , and integer *k*.
- Objective function: $\sum_{x \in X} \min_{c \in C} ||x c||^2$
- Minimize objective while obeying additional constraints.
- Examples of constraints:
 - *r*-gather clustering: Each cluster has size at least *r*.
 - Capacitated clustering: Cluster sizes have upper bounds.
 - Chromatic clustering: No two points in cluster with same color.

•	•	•	•	•	•					
٠	٠	٠	٠	٠	٠		٠	٠	٠	•
٠	٠	٠	٠	٠	٠		٠	٠	٠	٠
٠	٠	٠	٠	٠	٠		٠	٠	٠	٠
٠	٠	٠	٠	٠	٠		٠	٠	٠	٠
٠	•	٠	•	٠	•					

Figure : *r*-gather clustering: Input points in \mathbb{R}^2 , k = 2, r = 20

▲□ → ▲ □ → ▲ □ →

Constrained Clustering: Examples

- *r*-gather clustering: Each cluster has size at least *r*.
- Unconstrained *k*-means clustering on the input instance.

Figure : Solution for Unconstrained clustering

K 4 E K 4 E K

Constrained Clustering: Examples

• *r*-gather clustering: Each cluster has size at least *r*.

Figure : *r*-gather clustering: Input points in \mathbb{R}^2 , k = 2, r = 20

過 ト イヨ ト イヨト

Constrained k-means Problem

- Constrained k-means [Ding & Xu 2015]: Given n points in ℝ^d, integer k, and set of constraints, find k clusters which minimize objective function.
- $(1 + \epsilon)$ -approximation for constrained *k*-means [Ding & Xu 2015].

くほと くほと くほと

Constrained k-means Problem

- Locality property: Points in the same cluster are closer to each other.
- True for unconstrained clustering.
- Locality not valid for constrained clustering.

Figure : *r*-gather Clustering: Input points in \mathbb{R}^2 , k = 2, r = 20

• • = • • = •

Cluster Assignment: Find Clusters from Centers

- Find clusters given k centers.
- Voronoi partitioning works for unconstrained clustering.
- Constrained clustering: [Ding & Xu 2015] Designed polynomial time assignment algorithms for various constrained *k*-means problems.

< 回 ト < 三 ト < 三 ト

Cluster Assignment Algorithm

- Find clusters minimizing objective while satisfying constraints.
- Assignment algorithm for r-gather clustering [Ding & Xu 2015]
- Reduces to min-cost circulation problem.

Figure : Assignment algorithm for r-gather Clustering

• • = • • = •

Constrained *k*-means: Known Results

- Number of candidate centers $L \leq O((\log n)^k 2^{\operatorname{poly}(\frac{k}{\epsilon})})$.
- Assignment takes P(X) time to find clustering cost.
- Ding & Xu give $(1 + \epsilon)$ -approximation in time $O(nd \cdot L + P(X) \cdot L)$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

List k-means Problem

- Given $X \subseteq \mathbb{R}^d$, integer $k, \epsilon > 0$, implicit OPT partition X_1, \ldots, X_k .
- List k-means finds a set $C = \{C_1, \ldots, C_L\}$.
- Each C_i is set of k centers.
- Such that $\exists j \in [1, L]$, C_j gives $(1 + \epsilon)$ -approximation wrt X_1, \ldots, X_k .

<ロト < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

List *k*-means to Constrained *k*-means

- List k-means outputs a list of candidate k-centers.
- For each *k*-center, compute clustering using assignment algorithm.
- The clustering with minimum cost would be the solution for constrained *k*-means.

一日、

List k-means

- List size in [Ding & Xu] is $L \leq O((\log n)^k 2^{\operatorname{poly}(\frac{k}{\epsilon})})$
- [BJK2018] has list size $L \leq 2^{\tilde{O}(\frac{k}{\epsilon})}$
- Notice that list size is independent of *n*.
- Almost matching lower bound: $L \ge 2^{\tilde{\Omega}(\frac{k}{\sqrt{\epsilon}})}$
- Running time: $O(nd \cdot L + P(X) \cdot L)$

くぼう くほう くほう

List k-means

- List size in [Ding & Xu] is $L \leq O((\log n)^k 2^{\operatorname{poly}(\frac{k}{\epsilon})})$
- [BJK2018] has list size $L \leq 2^{\tilde{O}(\frac{k}{\epsilon})}$
- Notice that list size is independent of *n*.
- Almost matching lower bound: $L \ge 2^{\tilde{\Omega}(\frac{k}{\sqrt{\epsilon}})}$
- Running time: $O(nd \cdot L + P(X) \cdot L)$

くぼう くほう くほう
- List size in [Ding & Xu] is $L \leq O((\log n)^k 2^{\operatorname{poly}(\frac{k}{\epsilon})})$
- [BJK2018] has list size $L \leq 2^{\tilde{O}(\frac{k}{\epsilon})}$
- Notice that list size is independent of *n*.
- Almost matching lower bound: $L \ge 2^{\tilde{\Omega}(\frac{k}{\sqrt{\epsilon}})}$
- Running time: $O(nd \cdot L + P(X) \cdot L)$

くぼう くほう くほう

- List size in [Ding & Xu] is $L \leq O((\log n)^k 2^{\operatorname{poly}(\frac{k}{\epsilon})})$
- [BJK2018] has list size $L \leq 2^{\tilde{O}(\frac{k}{\epsilon})}$
- Notice that list size is independent of *n*.
- Almost matching lower bound: $L \ge 2^{\tilde{\Omega}(\frac{k}{\sqrt{\epsilon}})}$
- Running time: $O(nd \cdot L + P(X) \cdot L)$

くぼう くほう くほう

- List size in [Ding & Xu] is $L \leq O((\log n)^k 2^{\operatorname{poly}(\frac{k}{\epsilon})})$
- [BJK2018] has list size $L \leq 2^{\tilde{O}(\frac{k}{\epsilon})}$
- Notice that list size is independent of *n*.
- Almost matching lower bound: $L \ge 2^{\tilde{\Omega}(\frac{k}{\sqrt{\epsilon}})}$
- Running time: $O(nd \cdot L + P(X) \cdot L)$

くぼう くほう くほう

- List size in [Ding & Xu] is $L \leq O((\log n)^k 2^{\operatorname{poly}(\frac{k}{\epsilon})})$
- [BJK2018] has list size $L \leq 2^{\tilde{O}(\frac{k}{\epsilon})}$
- Notice that list size is independent of *n*.
- Almost matching lower bound: $L \ge 2^{\tilde{\Omega}(\frac{k}{\sqrt{\epsilon}})}$
- Running time: $O(nd \cdot L + P(X) \cdot L)$
- Can be extended for List k-median problem.

Constrained Clustering

- For the largest OPT cluster things are fine.
- D^2 -sampling based scheme does not work for constrained clustering.

Figure : D^2 -sampling points, k = 2

過 ト イヨ ト イヨト

Constrained Clustering

• Centroid of none of the subsets may be good.

Figure : D^2 -sampling points, k = 2

くほと くほと くほと

Idea: Constrained Clustering

- Cluster misses representation if portions of it close to covered clusters.
- Idea: Add $O(\frac{1}{\epsilon})$ copies of centers in C to the set of sampled points.
- Trying all subsets of this new set works.
- We obtain $(1 + \epsilon)$ -approximation for List k-means with $L = 2^{\tilde{O}(\frac{k}{\epsilon})}$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Thanks & Questions

Sampling-based Algorithms for Clustering Problems

イロト イポト イヨト イヨト

3