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Introduction

Basics of Coresets

Small, weighted summary of the input.

Given an unweighted (possibly weighted) dataset and some
computational problem on this dataset, compute a small summary
such that the summary approximates the dataset well for that task.

Coresets for Clustering Problems



Introduction

k-means Clustering Problem

Input: Dataset X ⊆ Rd , and integer k .

Cost function: For C ⊆ Rd , |C | = k,
Φ(X ,C ) =

∑
x∈X minc∈C ||x − c ||2.

Objective: Find set C ⊆ Rd of k centers that minimizes Φ(X ,C ).
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Introduction

Coresets for k-means

Coresets to approximate the dataset well for k-means.
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Introduction

Coresets for k-means

Coresets to approximate the dataset well for k-means.

How to guarantee coresets approximate dataset well.

Coresets approximate dataset with respect to k-means objective
function.

3

4

2

5

3

2 4

Coresets for Clustering Problems



Introduction

Coresets for k-means

Approximates the objective function for input dataset simultaneously
for all queries.

Query for k-means: Cost of k-means objective function with respect
to set of k centers.
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Introduction

Basics of Coreset

Let X be a dataset with non-negative weights µX (x).

Let Q be set of possible queries or solutions.

Weighted set S is an ε-coreset of X if for all Q ∈ Q,

(1− ε)cost(X ,Q) ≤ cost(S ,Q) ≤ (1 + ε)cost(X ,Q)
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Introduction

Coresets for k-means

(k, ε)-Coreset for k-means

[HPM2004] Given a point set X ⊆ Rd , a weighted subset S ⊆ X is a
(k, ε)-coreset of X for k-means if for all C ⊆ Rd such that |C | = k,

(1− ε)cost(X ,C ) ≤ cost(S ,C ,w) ≤ (1 + ε)cost(X ,C )

cost(X ,C ) =
∑

x∈X d(x ,C )2, cost(S ,C ,w) =
∑

x∈S w(x)d(x ,C )2.
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Introduction

Basics of Coresets

Strong coreset: If above inequality is true for all queries Q ∈ Q.

Weak coreset: If above inequality is true for optimal solution Q∗ ∈ Q.
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Introduction

Basics of Coresets

Obtain Approximate Solutions using Coresets

Construct coreset and solve problem on the coreset.

Exact or approximate solution on the coreset gives approximate
solution for dataset.

We show: cost(X ,Q∗S) ≤ (1 + 2ε)cost(X ,Q∗X ).

cost(X ,Q∗S) ≤ 1
1−εcost(S ,Q∗S) ≤ 1

1−εcost(S ,Q∗X ) ≤
1+ε
1−εcost(X ,Q∗X ) ≤ (1 + 2ε)cost(X ,Q∗X ).

Coresets for Clustering Problems



Applications of Coresets Composable Coresets

Applications of Coresets

Coresets for Clustering Problems



Applications of Coresets Composable Coresets

Properties of Coresets

Union of Coresets is a Coreset

Let S1,S2 be (k , ε)-coresets for disjoint sets X1 and X2, then S1 ∪ S2
is a (k, ε)-coreset for X1 ∪ X2.

Composable Coresets

If S1 is a (k , ε)-coreset for S2, and S2 is a (k , δ)-coreset for S3, then
S1 is (k , ε+ δ + εδ)-coreset for S3.

∀C , (1− ε)cost(S2,C ,w2) ≤ cost(S1,C ,w1) ≤ (1 + ε)cost(S2,C ,w2).

∀C , (1− δ)cost(S3,C ,w3) ≤ cost(S2,C ,w2) ≤ (1 + δ)cost(S3,C ,w3).

Informally

If S1 is coreset of S2 with (1 + ε)-guarantee, and S2 is coreset of S3
with (1 + δ)-guarantee, then S1 gives (1 + ε)(1 + δ)-guarantee for S3.
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Applications of Coresets Composable Coresets

Merge and Reduce

Design streaming algorithm on insertion only data streams [BS1980,
HPM2004].

A1 A2 A3 A4 A5 A6 A7 A8

S1 S2 S3 S4

S5 S6

S7
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Applications of Coresets Composable Coresets

Merge and Reduce

Storage

log n levels in the tree, each level has at most one coreset: |S | log n.

Error of Approximation

We compute coresets of coresets, the error of approximation goes up.

Composing (k, ε) and (k , δ)-coresets gives guanrantee (1 + ε)(1 + δ).

Guarantee using log n levels becomes (1 + ε)log n.

We set ε′ = ε
log n .
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Applications of Coresets Composable Coresets

Distributed Algorithms using Coresets

Data partitioned across machines, they compute coreset on local data.

Machines send coresets to the central server.

Server computes union of coresets, coresets of coresets.

Complexity: Communication from machine to server: Coreset size.
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Techniques for Coreset Constructions
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Construction of Coresets

Coresets using Uniform Sampling

Idea: Subset of points sampled uniformly gives a coreset.

Question: How many samples do we need? Size of coreset using
uniform sampling?

Ω(n) uniform samples.

Ball of radius ǫ

k = 1

∆ >> 1
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Construction of Coresets

Har-Peled and Majumder (HPM2004)

Coresets for k-means and k-median in low dimensions.

Computes coresets of size O(kε−d log n).

Let C be constant factor approximation for k-means or k-median.

Build exponential grid of O(log n) levels around each center.

Snap input points to the closest point in the grid.

Price of snapping smaller than εOPT.

The weighted set S is a coreset.
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Construction of Coresets

Har-Peled and Kushal (2005)

Computes coreset of size independent of n of size O(k
2

εd
) for k-median

and O( k3

εd+1 ) for k-means.

Let C be a constant factor approximation.

Draw O( 1
εd−1 ) lines from each center.

Project each input point to the closest line.

Coreset size of O(kε ) and O(k
2

ε2
) for points on 1-D for k-median and

k-means respectively.
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Construction of Coresets

Chen’s Construction (2009)

Coreset size for k-median and k-means O(dk2 log nε−2).

Key idea: Partition dataset into disjoint subsets and take random
samples from each subset.

Start with an (α, β)-bicriteria approximation for k-means.

Partition space using concentric rings around these centers.

Take random samples from each ring.

Coreset size for k-median and k-means O(dk2 log nε−2).
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Construction of Coresets

Feldman-Langberg (2011)

Coreset size for k-means Õ(k3ε−4).

Samples points based on how important the points are with respect
to the objective function.

First computes sensitivity of points, and then samples points with
probability proportional to sensivity.
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Construction of Coresets

Coreset Constructions

Coresets for k-means

Reference Coreset Size

Har-Peled & Majumdar O(kε−d log n)

Har-Peled & Kushal O(k3ε−(d+1))

Chen Õ(dk2ε−2 log n)

Feldman & Langberg Õ(dkε−4)

Feldman-Schmidt-Sohler Õ(k3ε−4)
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Coreset Constructions using Dimensionality Reduction
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Coresets using Dimensionality Reduction

Coresets for k-means/k-median

Can you design coresets whose size is indepedent of d and n?

Coreset size is polynomial in k and 1
ε .
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Coresets using Dimensionality Reduction Construction of Coresets for k-means

Coresets for k-means (FSS2013)

Assume that the data is very high dimensional.

They give a dimensionality reduction scheme to show that most of
data lies in a much smaller dimensional subspace.

Apply known coreset constructions on data in smaller dimensional
subspace.
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Coresets using Dimensionality Reduction Construction of Coresets for k-means

Coresets for k-means (FSS2013)

Key idea: Cost of clustering of high dimensional points has a
pseudo-random part and a structured part.

Pseudo-random part of cost is same for all queries (with k centers).

Structured part of the cost comes from clustering projected points.

p

T

S

pT

c
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Coresets using Dimensionality Reduction Construction of Coresets for k-means

Coreset for 1-means

p

= + Cost(p;µ(X))

p

µ(X)

Identity for k-means: cost(X , p) = cost(X , µ(X )) + |X |||p − µ(X )||2.

Coreset centroid µ(X ) with weight |X | and constant cost(X , µ(X )).
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Coresets using Dimensionality Reduction Construction of Coresets for k-means

Coresets for k-means (FSS 2013)

Coreset Definition

Let A be a set of n points in Rd . A weighted set S ∈ Rm×d and a
constant ∆ > 0 is an ε-coreset for k-means if for all C

(1− ε)cost(A,C ) ≤ cost(S ,C ) + ∆ ≤ (1 + ε)cost(A,C )
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Coresets using Dimensionality Reduction Construction of Coresets for k-means

Coreset Construction for k-means (FSS2013)

Dimensionality Reduction Algorithm

Let OPT is known for k-means.

Compute k-dim subspace S that minimizes the sum of squared
distances from points to the subspace.

While there exists k dimensions such that adding those to S reduces
the subspace approximation cost by at least ε2OPT, add them to
subspace S .

Dimension of S is at most k
ε2

.

Coreset for k-means: Projected points on S (Structured part) and
cost of projection onto S (Pseudo-random part).
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Coresets using Dimensionality Reduction Construction of Coresets for k-means

Analysis

Let T be the subspace containing S and C (query with k centers).

cost(X ,C ) = cost(X ,T ) + cost(XT ,C ) ≈ cost(X ,S) + cost(XS ,C ).

We have cost(X , S)− cost(X ,T ) ≤ ε2OPT.

On avarage projected points on T and S are close. Because,
cost(XT ,XS) = cost(X ,S)− cost(X ,T ) ≤ ε2OPT.

Show that |cost(XS ,C )− cost(XT ,C )| ≤ εOPT.

T

S

p

pT

pS
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Coresets using Dimensionality Reduction Construction of Coresets for k-means

Coresets for k-means

FSS13

Let A be a set of n points in Rd , equivalently, A ∈ Rn×d . Let Am be
its rank m-approximation for m = O( k

ε2
). Then, there exists a

constant ∆ = ||A− Am||2F such that for all sets of k centers C ,

(1− ε)cost(A,C ) ≤ cost(Am,C ) + ∆ ≤ (1 + ε)cost(A,C )

Coreset

We have n points on O( k
ε2

)-dimensional subspace S , and a constant
equals the projection cost on subspace S .

We apply Feldman-Langberg coreset construction on S to obtain a
coreset of size Õ(k

2

ε6
).
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Coresets using Dimensionality Reduction Construction of Coresets for k-median

Coresets for k-median Problem

Euclidean k-median Problem

Given a set X of n points in Rd , and an integer k , the objective is to
find a set C ⊆ Rd of k centers such that the objective function∑

x∈X
min
c∈C
||x − c ||2

is minimized.

k-median is NP-hard, and constant factor approximation algorithms
are known for k-median.
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Coresets using Dimensionality Reduction Construction of Coresets for k-median

Coresets for k-median

Many results on designing strong coresets for k-median.

Feldman-Langberg framework for k-median has coreset of size kd
ε2

.

Focus for this talk

Woodruff-Sohler designs a coreset for k-median of size poly(k , 1ε ),
independent of d .
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Coresets using Dimensionality Reduction Construction of Coresets for k-median

Coreset for k-median (Woodruff-Sohler’18)

Can we get a coreset for k-median similar to k-means?

Let XS be the set of projected points on subspace S and a constant
∆. Do we have for all queries C ,

(1− ε)cost(X ,C ) ≤ cost(XS ,C ) + ∆ ≤ (1 + ε)cost(X ,C )

Gave a counterexample to any such guarantee for k-median.
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Coresets using Dimensionality Reduction Construction of Coresets for k-median

Coreset for k-median (Woodruff-Sohler’18)

Counterexample for k = 1

Let there be n points on a unit ball in Rd for very high d .

We project these points on a l = poly(k , 1ε )-dimensional subspace.

With high probability, norms of the projected points are very small.

For query with center at origin, we require ∆ = n.

For query with center at {1, 0, · · · , 0}, we get cost of original points
as
√

2n and total cost of coreset and constant is 2n.

Coresets for Clustering Problems



Coresets using Dimensionality Reduction Construction of Coresets for k-median

Coreset for k-median (Woodruff-Sohler’18)

Unlike for k-means, we cannot apply Pythagorean theorem here to
split the cost among the cost of projection and cost of clustering of
projected points.
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Coresets using Dimensionality Reduction Construction of Coresets for k-median

Coreset for k-median (Woodruff-Sohler’18)

Show that a variant of dimensionality reduction scheme works for
k-median.

Dimensionality reduction gives a set n points in Rd+1 such that most
of the points live in a much smaller dimensional subspace.
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Coresets using Dimensionality Reduction Construction of Coresets for k-median

Coreset for k-median (Woodruff-Sohler’18)

Key idea: Add a special dimension to any point with value equal to
the distance to subspace S .
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Coresets using Dimensionality Reduction Construction of Coresets for k-median

Dimensionality Reduction

Dimensionality Reduction Algorithm

Let Opt be the cost of the optimal k-median clustering.

Compute optimal k-dimensional subspace S for minimizing sum of
distances from points to subspace S .

While we can add k dimensions to S to reduce the cost of the
subspace approximation problem by ε2OPT, do that.

Let S be the best such subspace.

For each point p in X ,
1 Compute distance d(p, pS) where pS is the projection on subspace S .
2 Return (pS , d(p, pS)) ∈ Rd+1
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Coresets using Dimensionality Reduction Construction of Coresets for k-median

Analysis

Let T denote the subspace containing both S and C .

For any center cp ∈ C , we have
d(p, cp) = (d(p, pT )2 + d(pT , cp)2)1/2.

Cost with respect to the coreset is
d((pS , d(p, pS), (cp, 0)) = (d(pS , cp)2 + d(p, pS)2)1/2.

(Distance to Subspace Lemma)
cost(X , S)− cost(X ,T ) =

∑
p(d(p, pS)− d(p, pT )) ≤ ε2OPT.

(Distance inside Subspace Lemma)∑
p∈X |d(pT , cp)− d(pS , cp)| ≤ εOPT.
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Coresets using Dimensionality Reduction Construction of Coresets for k-median

Distance inside Subspace Lemma

To show:
∑

p∈P |d(pT , cp)− d(pS , cp)| ≤ εOPT.

Using triangle inequality, this is at most cost(XS ,XT ).

For all p ∈ Q such that d(pT , pS) ≤ εd(p, pS), we have∑
p∈Q d(pT , pS) ≤ εOPT .

Else, d(pT , pS) = (d(p, pS)2 − d(p, pT )2)1/2.

Since d(pT , pS) > εd(p, pS), using triangle inequality, we have above

expression is at most d(p,pS )−d(p,pT )
ε .

Since
∑

p d(p, pS)− d(p, pT ) ≤ ε2OPT, we are done.
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Coresets using Dimensionality Reduction Construction of Coresets for k-median

Analysis contd.

|cost(S ,C )− cost(X ,C )| ≤ εcost(X ,C ).

We show:
∑

p |d(p, cp)− d((pS , d(p, pS), (cp, 0))| ≤ 2εOPT.

|d(p, cp)− d((pS , d(p, pS), (cp, 0))|
= |(d(p, pT )2 + d(pT , cp)2)1/2 − (d(p, pS)2 + d(pS , cp)2)1/2|
= |d(p, pT ), d(pT , cp)|2 − |d(p, pS), d(pS , cp)|2
≤ |d(p, pT )− d(p, pS), d(pT , cp)− d(pS , cp)|2
≤ |d(p, pT )− d(p, pS), d(pT , cp)− d(pS , cp)|1
= |d(p, pT )− d(p, pS)|+ |d(pT , cp)− d(pS , cp)|
≤ 2εOPT

using Distance to Subspace Lemma and Distance inside Subspace Lemma
respectively. Coresets for Clustering Problems
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Thanks & Questions
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Introduction k-means Clustering

k-means Clustering Problem
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Introduction k-means Clustering

k-means Clustering Problem

Input: Dataset X ⊆ Rd , and integer k .

Cost function: For C ⊆ Rd , |C | = k,
Φ(X ,C ) =

∑
x∈X minc∈C ||x − c ||2.
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Introduction k-means Clustering

k-means Clustering Problem

Input: Dataset X ⊆ Rd , and integer k .

Cost function: For C ⊆ Rd , |C | = k,
Φ(X ,C ) =

∑
x∈X minc∈C ||x − c ||2.

Objective: Find set C ⊆ Rd of k
centers that minimizes Φ(X ,C ).
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Introduction k-means Clustering

k-means Clustering Problem

Input: Dataset X ⊆ Rd , and integer k .

Cost function: For C ⊆ Rd , |C | = k,
Φ(X ,C ) =

∑
x∈X minc∈C ||x − c ||2.

Objective: Find set C ⊆ Rd of k
centers that minimizes Φ(X ,C ).
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Introduction k-means Clustering

k-means Clustering Problem

Input: Dataset X ⊆ Rd , and integer k .

Cost function: For C ⊆ Rd , |C | = k,
Φ(X ,C ) =

∑
x∈X minc∈C ||x − c ||2.

Objective: Find set C ⊆ Rd of k
centers that minimizes Φ(X ,C ).

Voronoi partitioning gives k clusters.
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Introduction k-means Clustering

Known Results: k-means Clustering

α-approximation ALG: for any instance I , ALG(I ) ≤ α · OPT(I ).

Hardness Results Approximation Algorithms

NP-hard for k ≥ 2 [D2008] 6.357 by Ahmadian et al. (2016)

NP-hard for d ≥ 2 [V2009,MNV2012] (1 + ε) in O(nd2Õ( k
ε

)) [JKS2014]
APX-hard [Awasthi et al. (2015)]
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k-means Clustering Sampling based (1 + ε)-approximation of k-means

Approximation Algorithm for k-means
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k-means Clustering Sampling based (1 + ε)-approximation of k-means

1-means Problem

Objective function: minc∈Rd Φ(X , {c}) = minc∈Rd

∑
x∈X ||x − c||2.

Exact Solution

Centroid of points is the optimal center for 1-means.

Approximate Solution

A uniformly sampled point gives 2-approximation in expectation.

Fact: Φ(X , p) = Φ(X , µ(X )) + |X | · ||p − µ(X )||2
Centroid of O( 1

ε ) points sampled uniformly at random gives
(1 + ε)-approximation for 1-means with constant probability [IKI1994].
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k-means Clustering Sampling based (1 + ε)-approximation of k-means

2-means Problem

2-means is NP-hard.

Approximate Solution

Require a sample of size O( 1
ε ) chosen uniformly at random from each

of the optimal clusters.
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k-means Clustering Sampling based (1 + ε)-approximation of k-means

2-means Problem

Approximate Solution

Require a sample of size O( 1
ε ) chosen uniformly at random from each

of the optimal clusters.

Approximate Larger Optimal Cluster

Uniformly sample 2
ε points. Sample contains at least 1

ε points from
the larger optimal cluster.

Consider all subsets of size 1
ε of the sample. Running time

( 2
ε
1
ε

)
.

Centroid of these subsets are candidate centers for the optimal center
of the larger cluster.

Approximate Smaller Optimal Cluster

How do you approximate the center for the smaller optimal cluster?
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k-means Clustering Sampling based (1 + ε)-approximation of k-means

2-means Problem

Approximate Smaller Optimal Cluster

How do you approximate the center for the smaller optimal cluster?

Prune and Sample

For each of the candidate centers of the larger optimal cluster,
consider the set Q of farthest n

2i−1 points from the candidate center
for 1 ≤ i ≤ log n.

Randomly sample O( 1
ε2 ) points from Q. Consider all possible subsets

of size O( 1
ε ) from the sample.

Centroid of at least one subset gives (1 + ε)-approximation for the
smaller optimal cluster.

Same idea works for any k ≥ 2 [KSS2010].
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k-means Clustering Sampling based (1 + ε)-approximation of k-means

Sampling based (1 + ε)-approximations for k-means

Approximate Largest Optimal Cluster

Step 1: Uniformly sample O(kε ) points.

Whp, sample contains O( 1
ε ) points

from largest optimal cluster.

Step 2: Consider means of subsets of
size O( 1

ε ) of sample.

Approximates cluster in time O(kε )O( 1
ε

).
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k-means Clustering Sampling based (1 + ε)-approximation of k-means

Sampling based (1 + ε)-approximations for k-means

Approximate Smaller Optimal Clusters

Number of points in some optimal
clusters may be very small.

Uniform sampling does not help to
approximate smaller clusters.

Sampling-based Algorithms for Clustering Problems



k-means Clustering Sampling based (1 + ε)-approximation of k-means

D2-Sampling

D2-Sampling

Let C be set of already chosen centers.

D2-sampling chooses point p as next
center wp prop. to minc∈C ||p − c||2.

||p1 − c1||2
p1

c1
||p2 − c1||2

p2

D2-Sampling based Algorithms

k centers using D2-sampling gives O(log k)-approximation [AV2007].

O(k) such centers give constant pseudo-approximation [ADK2009].

Sampling-based Algorithms for Clustering Problems



k-means Clustering Sampling based (1 + ε)-approximation of k-means

D2-Sampling based Algorithms

k centers using D2-sampling gives O(log k)-approximation [AV2007].

O(k) such centers give constant pseudo-approximation [ADK2009].

k-means++

A point is sampled from an uncovered optimal cluster, that cluster is
well-approximated.

Overall (log k)-approximation because may miss some clusters.

Lower bound of Ω(log k) for k-means++.

Sampling-based Algorithms for Clustering Problems



k-means Clustering Sampling based (1 + ε)-approximation of k-means

Sampling based (1 + ε)-approximations for k-means

D2-Sampling based Algorithm

Iterative algorithm, Ci be
chosen centers till ith iteration.

Step 1: S is D2-sample with
respect to Ci of O( k

ε3 ) points.

Step 2: Consider mean of
subsets of size O( 1

ε ) of sample.

||p1 − c1||2
p1

c1
||p2 − c1||2

p2

(1 + ε)-approx for k-means in time O(nd · 2Õ( k
ε

)) [JKS2014].
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k-means Clustering Constrained k-means

Constrained Clustering: Examples

Given n points in Rd , and integer k .

Objective function:
∑

x∈X minc∈C ||x − c ||2
Minimize objective while obeying additional constraints.

Examples of constraints:

r -gather clustering: Each cluster has size at least r .
Capacitated clustering: Cluster sizes have upper bounds.
Chromatic clustering: No two points in cluster with same color.

Figure : r -gather clustering: Input points in R2, k = 2, r = 20
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k-means Clustering Constrained k-means

Constrained Clustering: Examples

r -gather clustering: Each cluster has size at least r .

Unconstrained k-means clustering on the input instance.

Figure : Solution for Unconstrained clustering
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k-means Clustering Constrained k-means

Constrained Clustering: Examples

r -gather clustering: Each cluster has size at least r .

Figure : r -gather clustering: Input points in R2, k = 2, r = 20
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k-means Clustering Constrained k-means

Constrained k-means Problem

Constrained k-means [Ding & Xu 2015]: Given n points in Rd ,
integer k , and set of constraints, find k clusters which minimize
objective function.

(1 + ε)-approximation for constrained k-means [Ding & Xu 2015].
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k-means Clustering Constrained k-means

Constrained k-means Problem

Locality property: Points in the same cluster are closer to each other.

True for unconstrained clustering.

Locality not valid for constrained clustering.

Figure : r -gather Clustering: Input points in R2, k = 2, r = 20
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k-means Clustering Constrained k-means

Cluster Assignment: Find Clusters from Centers

Find clusters given k centers.

Voronoi partitioning works for unconstrained clustering.

Constrained clustering: [Ding & Xu 2015] Designed polynomial time
assignment algorithms for various constrained k-means problems.
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k-means Clustering Constrained k-means

Cluster Assignment Algorithm

Find clusters minimizing objective while satisfying constraints.

Assignment algorithm for r -gather clustering [Ding & Xu 2015]

Reduces to min-cost circulation problem.

. . .

x1

xi

c1

. . .

. . .

ck

||xi − cj ||2

xn

Figure : Assignment algorithm for r -gather Clustering
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Constrained k-means: Known Results

Number of candidate centers L ≤ O((log n)k2poly( k
ε

)).

Assignment takes P(X ) time to find clustering cost.

Ding & Xu give (1 + ε)-approximation in time O(nd · L + P(X ) · L).
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List k-means Problem

Given X ⊆ Rd , integer k , ε > 0, implicit OPT partition X1, . . . ,Xk .

List k-means finds a set C = {C1, . . . ,CL}.
Each Ci is set of k centers.

Such that ∃j ∈ [1, L], Cj gives (1 + ε)-approximation wrt X1, . . . ,Xk .
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List k-means to Constrained k-means

List k-means outputs a list of candidate k-centers.

For each k-center, compute clustering using assignment algorithm.

The clustering with minimum cost would be the solution for
constrained k-means.
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List k-means

List size in [Ding & Xu] is L ≤ O((log n)k2poly( k
ε

))

[BJK2018] has list size L ≤ 2Õ( k
ε

)

Notice that list size is independent of n.

Almost matching lower bound: L ≥ 2
Ω̃( k√

ε
)

Running time: O(nd · L + P(X ) · L)

Can be extended for List k-median problem.
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Constrained Clustering

For the largest OPT cluster things are fine.

D2-sampling based scheme does not work for constrained clustering.

Figure : D2-sampling points, k = 2
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Constrained Clustering

Centroid of none of the subsets may be good.

Figure : D2-sampling points, k = 2
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Idea: Constrained Clustering

Cluster misses representation if portions of it close to covered clusters.

Idea: Add O( 1
ε ) copies of centers in C to the set of sampled points.

Trying all subsets of this new set works.

We obtain (1 + ε)-approximation for List k-means with L = 2Õ( k
ε

).
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Thanks & Questions
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